0
点赞
收藏
分享

微信扫一扫

【无标题】深度学习1

時小白 2022-04-07 阅读 58
深度学习
import argparse
 import sys
 from copy import deepcopy
 import os
 import platform
 from pathlib import Path
  
 FILE = Path(__file__).resolve()
 ROOT = FILE.parents[1] # YOLOv5 root directory
 if str(ROOT) not in sys.path:
 sys.path.append(str(ROOT)) # add ROOT to PATH
 if platform.system() != 'Windows':
 ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  
 from models.common import *
 from models.experimental import *
 from utils.autoanchor import check_anchor_order
 from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
 from utils.plots import feature_visualization
 from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync
  
 try:
 import thop # for FLOPs computation
 except ImportError:
 thop = None
  
  
  
  
 class Detect(nn.Module):
 stride = None # strides computed during build
 onnx_dynamic = False # ONNX export parameter
  
 def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
 super().__init__()
 self.nc = nc # number of classes
 self.no = nc + 5 # number of outputs per anchor
 self.nl = len(anchors) # number of detection layers
 self.na = len(anchors[0]) // 2 # number of anchors
 self.grid = [torch.zeros(1)] * self.nl # init grid
 self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
 self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
 self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
 self.inplace = inplace # use in-place ops (e.g. slice assignment)
  
 def forward(self, x):
 z = [] # inference output
 for i in range(self.nl):
 x[i] = self.m[i](x[i]) # conv
 bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
 x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  
 if not self.training: # inference
 if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
 self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
  
 y = x[i].sigmoid()
 if self.inplace:
 y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
 else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
 xy, wh, conf = y.tensor_split((2, 4), 4)
 xy = (xy * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
 wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
 y = torch.cat((xy, wh, conf), 4)
 z.append(y.view(bs, -1, self.no))
  
 return x if self.training else (torch.cat(z, 1), x)
  
  
 def _make_grid(self, nx=20, ny=20, i=0):
 d = self.anchors[i].device
 shape = 1, self.na, ny, nx, 2 # grid shape
 if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
 yv, xv = torch.meshgrid(torch.arange(ny).to(d), torch.arange(nx).to(d), indexing='ij')
 else:
 yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
 grid = torch.stack((xv, yv), 2).expand(shape).float()
 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
 return grid, anchor_grid
  
 class Decoupled_Detect(nn.Module):
 stride = None # strides computed during build
 onnx_dynamic = False # ONNX export parameter
  
 def __init__(self, nc=80, anchors=(), ch=(),inplace=True): # detection layer
 super().__init__()
 self.nc = nc # number of classes
 self.no = nc + 5 # number of outputs per anchor
 self.nl = len(anchors) # number of detection layers
 self.na = len(anchors[0]) // 2 # number of anchors
 self.grid = [torch.zeros(1)] * self.nl # init grid
 self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
 self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
  
 self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
  
 self.cls_c1=Conv(self.no * self.na , self.no * self.na , 3)
 self.cls_c2=Conv(self.no * self.na , self.no * self.na , 3)
 self.reg_c1=Conv(self.no * self.na , self.no * self.na , 3)
 self.reg_c2=Conv(self.no * self.na , self.no * self.na , 3)
 self.cls_head = nn.Conv2d(self.no * self.na,self.nc*self.na,1)
 self.reg_head = nn.Conv2d(self.no * self.na,4*self.na,1)
 self.obj_head = nn.Conv2d(self.no * self.na,self.na,1)
 self.inplace = inplace # use in-place ops (e.g. slice assignment)
  
 def forward(self, x):
  
 z = [] # inference output
 for i in range(self.nl):
  
 #print( 'check output:',x[i].size())
 x[i] = self.m[i](x[i]) # conv
  
 reg_heads=self.reg_c2(self.reg_c1(x[i])) #回归头
 x[i]=torch.cat([self.reg_head(reg_heads),self.obj_head(reg_heads),self.cls_head(self.cls_c2(self.cls_c1(x[i])))],1)
  
 bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
 x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  
 if not self.training: # inference
 if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
 self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
  
 y = x[i].sigmoid()
 if self.inplace:
 y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
 else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
 xy, wh, conf = y.tensor_split((2, 4), 4)
 xy = (xy * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
 wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
 y = torch.cat((xy, wh, conf), 4)
 z.append(y.view(bs, -1, self.no))
  
 return x if self.training else (torch.cat(z, 1), x)
  
  
 def _make_grid(self, nx=20, ny=20, i=0):
 d = self.anchors[i].device
 shape = 1, self.na, ny, nx, 2 # grid shape
 if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
 yv, xv = torch.meshgrid(torch.arange(ny).to(d), torch.arange(nx).to(d), indexing='ij')
 else:
 yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
 grid = torch.stack((xv, yv), 2).expand(shape).float()
 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
 return grid, anchor_grid
  
 class ASFF_Detect(nn.Module): #add ASFFV5 layer and Rfb
 stride = None # strides computed during build
 onnx_dynamic = False # ONNX export parameter
  
 def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5,rfb=False,inplace=True): # detection layer
 super().__init__()
 self.nc = nc # number of classes
 self.no = nc + 5 # number of outputs per anchor
 self.nl = len(anchors) # number of detection layers
 self.na = len(anchors[0]) // 2 # number of anchors
 self.grid = [torch.zeros(1)] * self.nl # init grid
 self.l0_fusion = ASFFV5(level=0, multiplier=multiplier,rfb=rfb)
 self.l1_fusion = ASFFV5(level=1, multiplier=multiplier,rfb=rfb)
 self.l2_fusion = ASFFV5(level=2, multiplier=multiplier,rfb=rfb)
 self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
 self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
 self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
 self.inplace = inplace # use in-place ops (e.g. slice assignment)
  
 def forward(self, x):
 z = [] # inference output
 result=[]
  
 result.append(self.l2_fusion(x))
 result.append(self.l1_fusion(x))
 result.append(self.l0_fusion(x))
 x=result
 for i in range(self.nl):
 x[i] = self.m[i](x[i]) # conv
 bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
 x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  
 if not self.training: # inference
 if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
 self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
  
 y = x[i].sigmoid()
 if self.inplace:
 y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
 else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
 xy, wh, conf = y.tensor_split((2, 4), 4)
 xy = (xy * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
 wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
 y = torch.cat((xy, wh, conf), 4)
 z.append(y.view(bs, -1, self.no))
  
 return x if self.training else (torch.cat(z, 1), x)
  
 def _make_grid(self, nx=20, ny=20, i=0):
 d = self.anchors[i].device
 shape = 1, self.na, ny, nx, 2 # grid shape
 if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
 yv, xv = torch.meshgrid(torch.arange(ny).to(d), torch.arange(nx).to(d), indexing='ij')
 else:
 yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
 grid = torch.stack((xv, yv), 2).expand(shape).float()
 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
 return grid, anchor_grid
  
 class Model(nn.Module):
 def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
 super().__init__()
 if isinstance(cfg, dict):
 self.yaml = cfg # model dict
 else: # is *.yaml
 import yaml # for torch hub
 self.yaml_file = Path(cfg).name
 with open(cfg, encoding='ascii', errors='ignore') as f:
 self.yaml = yaml.safe_load(f) # model dict
  
 # Define model
 ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
 if nc and nc != self.yaml['nc']:
 LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
 self.yaml['nc'] = nc # override yaml value
 if anchors:
 LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
 self.yaml['anchors'] = round(anchors) # override yaml value
 self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
 self.names = [str(i) for i in range(self.yaml['nc'])] # default names
 self.inplace = self.yaml.get('inplace', True)
  
 # Build strides, anchors
 m = self.model[-1] # Detect()
 if isinstance(m, Detect)or isinstance(m, ASFF_Detect)or isinstance(m,Decoupled_Detect):
 s = 256 # 2x min stride
 m.inplace = self.inplace
 m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
 m.anchors /= m.stride.view(-1, 1, 1)
 check_anchor_order(m)
 self.stride = m.stride
 self._initialize_biases() # only run once
  
 # Init weights, biases
 initialize_weights(self)
 self.info()
 LOGGER.info('')
  
 def forward(self, x, augment=False, profile=False, visualize=False):
 if augment:
 return self._forward_augment(x) # augmented inference, None
 return self._forward_once(x, profile, visualize) # single-scale inference, train
  
 def _forward_augment(self, x):
 img_size = x.shape[-2:] # height, width
 s = [1, 0.83, 0.67] # scales
 f = [None, 3, None] # flips (2-ud, 3-lr)
 y = [] # outputs
 for si, fi in zip(s, f):
 xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
 yi = self._forward_once(xi)[0] # forward
 # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
 yi = self._descale_pred(yi, fi, si, img_size)
 y.append(yi)
 y = self._clip_augmented(y) # clip augmented tails
 return torch.cat(y, 1), None # augmented inference, train
  
 def _forward_once(self, x, profile=False, visualize=False):
 y, dt = [], [] # outputs
 for m in self.model:
 if m.f != -1: # if not from previous layer
 x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
 if profile:
 self._profile_one_layer(m, x, dt)
 x = m(x) # run
 y.append(x if m.i in self.save else None) # save output
 if visualize:
 feature_visualization(x, m.type, m.i, save_dir=visualize)
 return x
  
 def _descale_pred(self, p, flips, scale, img_size):
 # de-scale predictions following augmented inference (inverse operation)
 if self.inplace:
 p[..., :4] /= scale # de-scale
 if flips == 2:
 p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
 elif flips == 3:
 p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
 else:
 x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
 if flips == 2:
 y = img_size[0] - y # de-flip ud
 elif flips == 3:
 x = img_size[1] - x # de-flip lr
 p = torch.cat((x, y, wh, p[..., 4:]), -1)
 return p
  
 def _clip_augmented(self, y):
 # Clip YOLOv5 augmented inference tails
 nl = self.model[-1].nl # number of detection layers (P3-P5)
 g = sum(4 ** x for x in range(nl)) # grid points
 e = 1 # exclude layer count
 i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
 y[0] = y[0][:, :-i] # large
 i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
 y[-1] = y[-1][:, i:] # small
 return y
  
 def _profile_one_layer(self, m, x, dt):
 c = isinstance(m, Detect) or isinstance(m, ASFF_Detect) # is final layer, copy input as inplace fix
 o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
 t = time_sync()
 for _ in range(10):
 m(x.copy() if c else x)
 dt.append((time_sync() - t) * 100)
 if m == self.model[0]:
 LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
 LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
 if c:
 LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
  
 def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
 # https://arxiv.org/abs/1708.02002 section 3.3
 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
 m = self.model[-1] # Detect() module
 for mi, s in zip(m.m, m.stride): # from
 b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
 b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
 b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
 mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  
 def _print_biases(self):
 m = self.model[-1] # Detect() module
 for mi in m.m: # from
 b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
 LOGGER.info(
 ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
  
 # def _print_weights(self):
 # for m in self.model.modules():
 # if type(m) is Bottleneck:
 # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
  
 def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
 LOGGER.info('Fusing layers... ')
 for m in self.model.modules():
 if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
 m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
 delattr(m, 'bn') # remove batchnorm
 m.forward = m.forward_fuse # update forward
 self.info()
 return self
  
 def info(self, verbose=False, img_size=640): # print model information
 model_info(self, verbose, img_size)
  
 def _apply(self, fn):
 # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
 self = super()._apply(fn)
 m = self.model[-1] # Detect()
 if isinstance(m, Detect)or isinstance(m, ASFF_Detect) or isinstance(m,Decoupled_Detect):
 m.stride = fn(m.stride)
 m.grid = list(map(fn, m.grid))
 if isinstance(m.anchor_grid, list):
 m.anchor_grid = list(map(fn, m.anchor_grid))
 return self
  
  
 def parse_model(d, ch): # model_dict, input_channels(3)
 LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
 anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
 na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
 no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
  
 layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
 for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
 m = eval(m) if isinstance(m, str) else m # eval strings
 for j, a in enumerate(args):
 try:
 args[j] = eval(a) if isinstance(a, str) else a # eval strings
 except NameError:
 pass
  
 n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
 if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,CBAM,ResBlock_CBAM,
 CoordAtt,CrossConv,C3,CTR3,Involution, C3SPP, C3Ghost, CARAFE]:
 c1, c2 = ch[f], args[0]
 if c2 != no: # if not output
 c2 = make_divisible(c2 * gw, 8)
  
 args = [c1, c2, *args[1:]]
 if m in [BottleneckCSP, C3, C3TR,CTR3,C3Ghost]:
 args.insert(2, n) # number of repeats
 n = 1
 elif m is nn.BatchNorm2d:
 args = [ch[f]]
 elif m is Concat:
 c2 = sum([ch[x] for x in f])
 elif m is Concat_bifpn:
 c2 = max([ch[x] for x in f])
 elif m is Detect:
 args.append([ch[x] for x in f])
 if isinstance(args[1], int): # number of anchors
 args[1] = [list(range(args[1] * 2))] * len(f)
 elif m is ASFF_Detect or (m is Decoupled_Detect):
 args.append([ch[x] for x in f])
 if isinstance(args[1], int): # number of anchors
 args[1] = [list(range(args[1] * 2))] * len(f)
 elif m is Contract:
 c2 = ch[f] * args[0] ** 2
 elif m is Expand:
 c2 = ch[f] // args[0] ** 2
 else:
 c2 = ch[f]
  
 m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
 t = str(m)[8:-2].replace('__main__.', '') # module type
 np = sum([x.numel() for x in m_.parameters()]) # number params
 m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
 LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
 save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
 layers.append(m_)
 if i == 0:
 ch = []
 ch.append(c2)
 #print('parse model success')
 return nn.Sequential(*layers), sorted(save)
  
  
 if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
 parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
 parser.add_argument('--profile', action='store_true', help='profile model speed')
 opt = parser.parse_args()
 opt.cfg = check_yaml(opt.cfg) # check YAML
 print_args(FILE.stem, opt)
 device = select_device(opt.device)
  
 # Create model
 model = Model(opt.cfg).to(device)
 model.train()
  
 # Profile
 if opt.profile:
 img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
 y = model(img, profile=True)
  
 # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
 # from torch.utils.tensorboard import SummaryWriter
 # tb_writer = SummaryWriter('.')
 # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
 # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
  • ©
举报

相关推荐

0 条评论