0
点赞
收藏
分享

微信扫一扫

掌握Electron工具链:在Windows操作系统上无缝开发MacOS软件

孟佳 2024-11-18 阅读 18

在PyTorch中,您可以使用.to(device)方法将嵌套的字典中的所有支持的Tensor对象转移到GPU。以下是一个简单的例子 

import torch
 
# 假设您已经有了一个名为device的GPU设备对象
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
# 嵌套的字典,其中包含一些Tensors
nested_dict = {
    'a': torch.randn(2, 2),
    'b': {
        'b1': torch.randn(2, 2),
        'b2': torch.randn(2, 2)
    },
    'c': torch.randn(2, 2)
}
 
# 将嵌套字典中的所有Tensors移动到GPU
def to_gpu(data):
    if isinstance(data, dict):
        return {k: to_gpu(v) for k, v in data.items()}
    elif isinstance(data, list):
        return [to_gpu(i) for i in data]
    elif isinstance(data, tuple):
        return tuple([to_gpu(i) for i in data])
    elif torch.is_tensor(data) and data.device != device:
        return data.to(device)
    else:
        return data
 
nested_dict_gpu = to_gpu(nested_dict)
 
# 检查是否所有Tensors都已移动到GPU
for k, v in nested_dict_gpu.items():
    if torch.is_tensor(v):
        assert v.device == device

这个函数to_gpu会递归地检查字典中的每个元素,如果是Tensor类型并且不在GPU上,就会使用.to(device)方法转移它。您需要先设置device变量指向您的GPU设备。如果没有GPU可用,它会默认使用CPU。

举报

相关推荐

0 条评论