0
点赞
收藏
分享

微信扫一扫

AB 实验 p_value 计算


注意: python 版本太低不行

#!/usr/bin/env python
# coding=utf-8
import numpy as np
from scipy import stats

"""
l1是实验组的广告主价值 arpu 值,l2是对照组的

python 3.9
"""
l1 = [115.1, 115.05, 115.42, 116.27, 117.59, 117.15, 115.87]
l2 = [115.06, 115.01, 115.46, 126.4, 127.58, 127.29, 126.07]

improve_pct = round(np.mean((np.array(l1) - np.array(l2)) / np.array(l2)) * 100, 2)

statistic, p_value = stats.ttest_ind(l1, l2, alternative='greater')

# 平均提升
print("improve_pct: {}% ".format(improve_pct))
# p 值( p_value < 0.05 才是置信的)
print("p_value: ", p_value)


举报

相关推荐

0 条评论