B. Mr. Kitayuta's Colorful Graph
time limit per test
memory limit per test
input
output
n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
q
i-th query, he gives you two integers — ui and vi.
ui and vertex vi
Input
n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
q (1 ≤ q ≤ 100), denoting the number of the queries.
q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
Output
For each query, print the answer in a separate line.
Sample test(s)
input
4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4
output
2 1 0
input
5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
output
1 1 1 1 2
Note
Let's consider the first sample.
The figure above shows the first sample.
- 1 and vertex 2 are connected by color 1 and 2.
- 3 and vertex 4 are connected by color 3.
- 1 and vertex 4
并查集做法:
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
using namespace std;
int bin[210][210];
int n,m;
void init()
{
for(int i=1;i<201;i++)
{
for(int j=1;j<201;j++)
{
bin[i][j] = j;
}
}
}
int findx(int z,int x)
{
while(bin[z][x]!=x)
{
x = bin[z][x];
}
int k = x,j;
while(k!=x)
{
j = bin[z][k];
bin[z][k] = x;
k = j;
}
return x;
}
void merrg(int z,int x,int y)
{
int fx = findx(z,x);
int fy = findx(z,y);
if(fx!=fy)
{
bin[z][fx] = fy;
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
int x,y,z;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&x,&y,&z);
merrg(z,x,y);
}
int k;
int a,b;
scanf("%d",&k);
while(k--)
{
int cnt = 0;
scanf("%d%d",&a,&b);
for(int i=1;i<=m;i++)
{
int aa = findx(i,a);
int bb = findx(i,b);
if(aa == bb)
{
cnt++;
}
}
printf("%d\n",cnt);
}
}
return 0;
}
floyd做法:
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
using namespace std;
int map[101][101][101];
int n,m;
void init()
{
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
map[i][j][k] = 0;
}
}
}
}
void flordy()
{
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
for(int p=1;p<=n;p++)
{
//printf("map[%d][%d][%d] = %d map[%d][%d][%d] = %d\n",i,k,j,map[i][k][j],i,j,p,map[i][j][p]);
if(map[i][k][j] == 1 && map[i][j][p] == 1)
{
map[i][k][p] = 1;
map[i][p][k] = 1;
}
}
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
int x,y,z;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&x,&y,&z);
map[z][x][y] = 1;
map[z][y][x] = 1;
}
flordy();
int t;
int a,b;
scanf("%d",&t);
while(t--)
{
int cnt = 0;
scanf("%d%d",&a,&b);
for(int i=1;i<=m;i++)
{
if(map[i][a][b] == 1)
{
cnt++;
}
}
printf("%d\n",cnt);
}
}
return 0;
}