伪分布式
hadoop的三种安装方式:
- Local (Standalone) Mode
- Pseudo-Distributed Mode
- Fully-Distributed Mode
安装之前需要
$ sudo apt-get install ssh
$ sudo apt-get install rsync
详见:http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
伪分布式配置
Configuration
修改下边:
etc/hadoop/core-site.xml:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
etc/hadoop/hdfs-site.xml:
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
配置ssh
$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
如果想运行在yarn上
需要执行下边的步骤:
- Configure parameters as follows:
- Start ResourceManager daemon and NodeManager daemon:
- Browse the web interface for the ResourceManager; by default it is available at:
etc/hadoop/mapred-site.xml:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
etc/hadoop/yarn-site.xml:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
$ sbin/start-yarn.sh
- ResourceManager - http://localhost:8088/
- Run a MapReduce job.
- When you're done, stop the daemons with:
$ sbin/stop-yarn.sh
输入:
http://localhost:8088/
可以看到
启动yarn后
- Format the filesystem:
- Start NameNode daemon and DataNode daemon:
- Browse the web interface for the NameNode; by default it is available at:
$ bin/hdfs namenode -format
$ sbin/start-dfs.sh
The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).
- NameNode -http://localhost:50070/
输入后得到:
然后执行测试
- Make the HDFS directories required to execute MapReduce jobs:
- Copy the input files into the distributed filesystem:
- Run some of the examples provided:
- Examine the output files:
$ bin/hdfs dfs -mkdir /user
$ bin/hdfs dfs -mkdir /user/<username>
$ bin/hdfs dfs -put etc/hadoop input
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar grep input output 'dfs[a-z.]+'
Copy the output files from the distributed filesystem to the local filesystem and examine them:
$ bin/hdfs dfs -get output output
$ cat output/*
or
View the output files on the distributed filesystem:
$ bin/hdfs dfs -cat output/*
看运行的情况:
查看结果
测试执行成功,可以编写本地代码了。
eclipse hadoop2.6插件使用
下载源码:
git clone https://github.com/winghc/hadoop2x-eclipse-plugin.git
下载过程:
编译插件:
cd src/contrib/eclipse-plugin
ant jar -Dversion=2.6.0 -Declipse.home=/usr/local/eclipse -Dhadoop.home=/usr/local/hadoop-2.6.0 //路径根据自己的配置
- 复制编译好的jar到eclipse插件目录,重启eclipse
- 配置 hadoop 安装目录
遇到异常
Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://localhost:9000/output already exists
at org.apache.hadoop.mapred.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:132)
at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:564)
at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:432)
at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:562)
at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:557)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:557)
at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:548)
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:833)
at com.zongtui.WordCount.main(WordCount.java:83)
1、改变输出路径。
2、删除重新建。
运行完成后看结果:
作者:张锋
本文版权归作者,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。
更多精彩文章可以观注
微信公众号