文章目录
- 数据准备
- 图像转图结构
- 图结构可视化
数据准备
图像转图结构
image2graph.py
#import rdp
# Code Copied From Favyen
import scipy.ndimage
import skimage.morphology
import os
from PIL import Image
import cv2
import math
import numpy
import numpy as np
from multiprocessing import Pool
import subprocess
import sys
from math import sqrt
import pickle
import tifffile
import json
def distance(a, b):
return sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
def point_line_distance(point, start, end):
if (start == end):
return distance(point, start)
else:
n = abs(
(end[0] - start[0]) * (start[1] - point[1]) - (start[0] - point[0]) * (end[1] - start[1])
)
d = sqrt(
(end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2
)
return n / d
def rdp(points, epsilon):
"""
Reduces a series of points to a simplified version that loses detail, but
maintains the general shape of the series.
"""
dmax = 0.0
index = 0
for i in range(1, len(points) - 1):
d = point_line_distance(points[i], points[0], points[-1])
if d > dmax:
index = i
dmax = d
if dmax >= epsilon:
results = rdp(points[:index+1], epsilon)[:-1] + rdp(points[index:], epsilon)
else:
results = [points[0], points[-1]]
return results
PADDING = 30
in_fname = 'data/region_0_gt.png'
threshold = 1
out_fname = 'graph_gt.pickle'
im = cv2.imread(in_fname, 0)
im = numpy.array(im)
if len(im.shape) == 3:
print('warning: bad shape {}, using first channel only'.format(im.shape))
im = im[:, :, 0]
im = numpy.swapaxes(im, 0, 1)
im = (im >= threshold)
Image.fromarray(im.astype('uint8')*60).save("tmp0.png")
im = skimage.morphology.thin(im)
im = im.astype('uint8')
Image.fromarray(im*255).save("tmp.png")
# extract a graph by placing vertices every THRESHOLD pixels, and at all intersections
vertices = []
edges = set()
def add_edge(src, dst):
if (src, dst) in edges or (dst, src) in edges:
return
elif src == dst:
return
edges.add((src, dst))
point_to_neighbors = {}
q = []
while True:
if len(q) > 0:
lastid, i, j = q.pop()
path = [vertices[lastid], (i, j)]
if im[i, j] == 0:
continue
point_to_neighbors[(i, j)].remove(lastid)
if len(point_to_neighbors[(i, j)]) == 0:
del point_to_neighbors[(i, j)]
else:
w = numpy.where(im > 0)
if len(w[0]) == 0:
break
i, j = w[0][0], w[1][0]
lastid = len(vertices)
vertices.append((i, j))
path = [(i, j)]
while True:
im[i, j] = 0
neighbors = []
for oi in [-1, 0, 1]:
for oj in [-1, 0, 1]:
ni = i + oi
nj = j + oj
if ni >= 0 and ni < im.shape[0] and nj >= 0 and nj < im.shape[1] and im[ni, nj] > 0:
neighbors.append((ni, nj))
if len(neighbors) == 1 and (i, j) not in point_to_neighbors:
ni, nj = neighbors[0]
path.append((ni, nj))
i, j = ni, nj
else:
if len(path) > 1:
path = rdp(path, 2)
if len(path) > 2:
for point in path[1:-1]:
curid = len(vertices)
vertices.append(point)
add_edge(lastid, curid)
lastid = curid
neighbor_count = len(neighbors) + len(point_to_neighbors.get((i, j), []))
if neighbor_count == 0 or neighbor_count >= 2:
curid = len(vertices)
vertices.append(path[-1])
add_edge(lastid, curid)
lastid = curid
for ni, nj in neighbors:
if (ni, nj) not in point_to_neighbors:
point_to_neighbors[(ni, nj)] = set()
point_to_neighbors[(ni, nj)].add(lastid)
q.append((lastid, ni, nj))
for neighborid in point_to_neighbors.get((i, j), []):
add_edge(neighborid, lastid)
break
neighbors = {}
print(vertices)
#with open(out_fname, 'w') as f:
#for vertex in vertices:
# f.write('{} {}\n'.format(vertex[0], vertex[1]))
#f.write('\n')
vertex = vertices
for edge in edges:
nk1 = (vertex[edge[0]][1],vertex[edge[0]][0])
nk2 = (vertex[edge[1]][1],vertex[edge[1]][0])
if nk1 != nk2:
if nk1 in neighbors:
if nk2 in neighbors[nk1]:
pass
else:
neighbors[nk1].append(nk2)
else:
neighbors[nk1] = [nk2]
if nk2 in neighbors:
if nk1 in neighbors[nk2]:
pass
else:
neighbors[nk2].append(nk1)
else:
neighbors[nk2] = [nk1]
#f.write('{} {}\n'.format(edge[0], edge[1]))
#f.write('{} {}\n'.format(edge[1], edge[0]))
print(neighbors)
pickle.dump(neighbors, open(out_fname, "wb"))
图结构可视化
data_vis.py
import pickle
import cv2
import numpy as np
import sys
def drawgraph(graph, filename):
img = np.ones((2048,2048,3), dtype=np.uint8)*255
for n, v in graph.items():
for nei in v:
p1 = (int(n[1]), int(n[0]))
p2 = (int(nei[1]), int(nei[0]))
img = cv2.line(img, p1, p2, (0,0,0),2)
for n, v in graph.items():
p1 = (int(n[1]), int(n[0]))
img = cv2.circle(img, p1, 2, (0,0,255),-1)
cv2.imwrite(filename, img)
graph1 = pickle.load(open("data/graph_gt.pickle", 'rb'))
graph2 = pickle.load(open("refine_gt_graph.p", 'rb'))
drawgraph(graph1, "org.png")
drawgraph(graph2, "refine.png")