一. 为什么使用spring cloud alibaba
很多人可能会问,有了spring cloud这个微服务的框架,为什么又要使用spring cloud alibaba这个框架了?
最重要的原因在于spring cloud中的几乎所有的组件都使用Netflix公司的产品,然后在其基础上做了一层封装。然而Netflix的服务发现组件Eureka已经停止更新,大多公司在使用的时候就发现过其一个细小的Bug;而其他的众多组件也将停止维护。所以急需其他的一些替代产品,也就是spring cloud alibaba,目前正在蓬勃发展。
kafka面试基础[17]
1.Kafka的用途有哪些?使用场景如何?
2.Kafka中的ISR、AR又代表什么?ISR的伸缩又指什么
3.Kafka中的HW、LEO、LSO、LW等分别代表什么?
4.Kafka中是怎么体现消息顺序性的?
5.Kafka中的分区器、序列化器、拦截器是否了解?它们之间的处理顺序是什么?
6.Kafka生产者客户端的整体结构是什么样子的?
7.Kafka生产者客户端中使用了几个线程来处理?分别是什么?
8.Kafka的旧版Scala的消费者客户端的设计有什么缺陷?
9.“消费组中的消费者个数如果超过topic的分区,那么就会有消费者消费不到数据”这句话是否正确?如果正确,那么有没有什么hack的手段?
10.有哪些情形会造成重复消费?
11.哪些情景下会造成消息漏消费?
12.KafkaConsumer是非线程安全的,那么怎么样实现多线程消费?
13.简述消费者与消费组之间的关系
14.当你使用kafka-topics.sh创建(删除)了一个topic之后,Kafka背后会执行什么逻辑?
15.topic的分区数可不可以增加?如果可以怎么增加?如果不可以,那又是为什么?
16.topic的分区数可不可以减少?如果可以怎么减少?如果不可以,那又是为什么?
17.创建topic时如何选择合适的分区数?
kafka面试进阶[15]
1.Kafka目前有哪些内部topic,它们都有什么特征?各自的作用又是什么?
2.优先副本是什么?它有什么特殊的作用?
3.Kafka有哪几处地方有分区分配的概念?简述大致的过程及原理
4.简述Kafka的日志目录结构
5.Kafka中有哪些索引文件?
6.如果我指定了一个offset,Kafka怎么查找到对应的消息?
7.如果我指定了一个timestamp,Kafka怎么查找到对应的消息?
8.聊一聊你对Kafka的Log Retention的理解
9.聊一聊你对Kafka的Log Compaction的理解
10.聊一聊你对Kafka底层存储的理解
11.聊一聊Kafka的延时操作的原理
12聊一聊Kafka控制器的作用
13.Kafka的旧版Scala的消费者客户端的设计有什么缺陷?
14.消费再均衡的原理是什么?(提示:消费者协调器和消费组协调器)
15.Kafka中的幂等是怎么实现的?
kafka面试高阶[12]
1.Kafka中的事务是怎么实现的?
2.失效副本是指什么?有哪些应对措施?
3.多副本下,各个副本中的HW和LEO的演变过程
4.Kafka在可靠性方面做了哪些改进?(HW, LeaderEpoch)
5.为什么Kafka不支持读写分离?
6.Kafka中的延迟队列怎么实现
7.Kafka中怎么实现死信队列和重试队列?
8.Kafka中怎么做消息审计?
9.Kafka中怎么做消息轨迹?
10.怎么计算Lag?(注意read_uncommitted和read_committed状态下的不同)
11.Kafka有哪些指标需要着重关注?
12.Kafka的哪些设计让它有如此高的性能?
答案在这里啦!!整理起来好多呀,有30页....
看完了笔记,刷了面试真题,最后对整个kafka知识做个梳理总结:控制器(Controller)、生产者、配置参数、消费者、Broker端、主题与分区、文件目录、时间轮(TimingWheel)等
最后
面试前一定少不了刷题,为了方便大家复习,我分享一波个人整理的面试大全宝典
- Java核心知识整理
Java核心知识
- Spring全家桶(实战系列)
- 其他电子书资料
Step3:刷题
既然是要面试,那么就少不了刷题,实际上春节回家后,哪儿也去不了,我自己是刷了不少面试题的,所以在面试过程中才能够做到心中有数,基本上会清楚面试过程中会问到哪些知识点,高频题又有哪些,所以刷题是面试前期准备过程中非常重要的一点。
以下是我私藏的面试题库:
本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录