目录
二、零样本图像分类(zero-shot-image-classification)
一、引言
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型
今天介绍CV计算机视觉的第七篇,零样本图像分类(zero-shot-image-classification),在huggingface库内有500个零样本图像分类模型。
二、零样本图像分类(zero-shot-image-classification)
2.1 概述
零样本图像分类是指模型对以前未见过的图片类别进行分类的任务,它要求模型能够在没有看到特定类别样本的情况下,对这些类别进行分类。这通常通过学习类别之间的语义表示(如从文本描述中学习)来实现,并将图像特征与这些语义表示相匹配。
2.2 技术原理
比较典型的模型是openai发布的clip-vit-base-patch16,曾被应用于Stable Diffusion文生图模型中,用于文本与图片间的信息关联。关于文生图/图生图可参考我之前的文章
2.3 应用场景
2.4 pipeline参数
2.4.1 pipeline对象实例化参数
2.4.2 pipeline对象使用参数
2.4 pipeline实战
分别采用google/siglip-so400m-patch14-384和openai/clip-vit-base-patch16对以下图片进行分类
图片一:
图片二:
采用pipeline代码如下
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from transformers import pipeline
classifier = pipeline(model="google/siglip-so400m-patch14-384")
output=classifier(
"./sd-xl.png",
candidate_labels=["animals", "humans", "landscape"],
)
print(output)
classifier = pipeline(model="openai/clip-vit-base-patch16")
output=classifier(
"http://images.cocodataset.org/val2017/000000039769.jpg",
candidate_labels=["black and white", "photorealist", "painting"],
)
print(output)
执行后,自动下载模型文件并进行识别:
2.5 模型排名
在huggingface上,我们将零样本图片分类(zero-shot-image-classification)模型按下载量从高到低排序:
三、总结
本文对transformers之pipeline的零样本图片分类(zero-shot-image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本图片分类(zero-shot-image-classification)模型。
期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:
《Transformers-Pipeline概述》
【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
《Transformers-Pipeline 第一章:音频(Audio)篇》
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
《Transformers-Pipeline 第二章:计算机视觉(CV)篇》
【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
【人工智能】Transformers之Pipeline(八):图生图(image-to-image)
【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
【人工智能】Transformers之Pipeline(十五):总结(summarization)
【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
【人工智能】Transformers之Pipeline(二十一):翻译(translation)
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
《Transformers-Pipeline 第四章:多模态(Multimodal)篇》
【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)
【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)
【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)
【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)
【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)