0
点赞
收藏
分享

微信扫一扫

java高级之单元测试、反射

楚木巽 2023-11-06 阅读 37
c++算法

再谈构造函数

构造函数体赋值

在创建对象时,编译器通过调用构造函数给对象各个成员变量一个合适的初始值

class Date
 {
 public:
     Date(int year, int month, int day)
     {
         _year = year;
         _month = month;
         _day = day;
     }
 ​
 private:
     int _year;
     int _month;
     int _day;
 };  

虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量 的初始化,构造函数体中的语句只能将其称为赋初值,而不能称作初始化。因为初始化只能初始 化一次,而构造函数体内可以多次赋值

初始化列表

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟 一个放在括号中的初始值或表达式。

 class Date
 {
 public:
     //初始化列表
     Date(int year, int month, int day)
         : _year(year), _month(month), _day(day)
     {
     }
 ​
 private:
     int _year;
     int _month;
     int _day;
 };

【注意】

  1. 每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)

  2. 类中包含以下成员,必须放在初始化列表位置进行初始化:

  • 引用成员变量

  • const成员变量

  • 自定义类型成员(且该类没有默认构造函数时)

尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量, 一定会先使用初始化列表初始化。

成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后 次序无关

 class A
 {
 public:
     A(int a)
         : _a1(a)
     {
         cout << "A(int a)" << endl;
     }
 ​
     A(const A &aa)
         : _a1(aa._a1)//拷贝构造也是构造,也可以进行初始化列表
     {
         cout << "A(const A& aa)" << endl;
     }
 ​
 private:
     int _a2;
     int _a1;
 };
 ​
 int main()
 {
     int i = 1;
     double d = i; // 隐式类型转换 i通过创建一个临时变量(具有常性,double类型),i->临时变量->d
 ​
     A aa1(1);  // 直接调用 构造函数
     A aa2 = 1; // 隐式类型转换 1通过创建一个临时变量(具有常性,A类型),i->临时变量->d
 ​
     return 0;
 }

输出结果:

在此处既然要进行创建临时变量,为什么没有进行拷贝构造呢? 此处是编译器对其进行了优化:构造+拷贝—优化->构造;优化为直接进行构造

看这段代码:

 class A
 {
 public:
     A(int a)
         : _a1(a)
     {
         cout << "A(int a)" << endl;
     }
 ​
     A(const A &aa)
         : _a1(aa._a1)//拷贝构造也是构造,也可以进行初始化列表
     {
         cout << "A(const A& aa)" << endl;
     }
 ​
 private:
     int _a2;
     int _a1;
 };
 int main()
 {
     const A& ret=10;
   
     return 0;
 }


explicit关键字

不想隐式类型转换情况发生,则使用关键字explicit,针对的是单参数构造函数

举例:

 class A
 {
 public:
     explicit A(int a)
         : _a1(a)
     {
         cout << "A(int a)" << endl;
     }
 ​
     A(const A &aa)
         : _a1(aa._a1) // 拷贝构造也是构造,也可以进行初始化列表
     {
         cout << "A(const A& aa)" << endl;
     }
 ​
 private:
     int _a2;
     int _a1;
 };
 ​
 int main()
 {
     A aa2 = 1;
 ​
     const A &ret = 10;
 ​
     return 0;
 }


多个参数: 虽然有多个参数,但是创建对象时后两个参数可以不传递,没有使用explicit修饰,具 有类型转换作用

 class Date
 {
 public:
     //虽然有多个参数,但是创建对象时后两个参数可以不传递,没有使用explicit修饰,具 有类型转换作用
     // explicit修饰构造函数,禁止类型转换
     explicit Date(int year, int month = 1, int day = 1)
         : _year(year), _month(month), _day(day)
     {
     }
     Date &operator=(const Date &d)
     {
         if (this != &d)
         {
             _year = d._year;
             _month = d._month;
             _day = d._day;
         }
         return *this;
     }
 ​
 private:
     int _year;
     int _month;
     int _day;
 };
 void Test()
 {
     Date d1(2022);
     // 用一个整形变量给日期类型对象赋值
     // 实际编译器背后会用2023构造一个无名对象,最后用无名对象给d1对象进行赋值 d1 = 2023;
     // 将1屏蔽掉,2放开时则编译失败,因为explicit修饰构造函数,禁止了单参构造函数类型转 换的作用
 }

static成员

概念:

声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用 static修饰成员函数,称之为静态成员函数静态成员变量一定要在类外进行初始化

计算一个程序一个调用了多少次类

一般的方法:定义全局变量count,每调用一次进行++

using std::cout;
using std::endl;

int count = 0;

class A
{
public:
    A(int a = 0)
    {
        ++count;
    }

    A(const A &aa)
    {
        ++count;
    }
};

void func(A)
{}

int main()
{
    A aa1;
    A aa2(aa1);

    func(aa1);

    A aa3 = 1;

    cout<<count<<endl;//3

    return 0;
}

static:

using std::cout;
using std::endl;

class A
{
public:
    A(int a = 0)
    {
        ++count;
    }

    A(const A &aa)
    {
        ++count;
    }

    int GetCount()
    {
        return count;
    }

private:
    // 不属于某个对象,属于所有对象,属于整个类
    static int count; // 声明 静态成员,不能给缺省值,缺省值是给初始化列表用的,是共有成员不能给缺省值
};

int A::count = 0; // 定义初始化

void func(A)
{
}

int main()
{
    A aa1;
    A aa2(aa1);

    func(aa1);

    A aa3 = 1;

    // cout << A::count << endl;//  count为私有,不能这样访问
    // cout<<aa.count<<endl;    //  count为私有,不能这样访问

    cout<<aa3.GetCount()-1<<endl;

    return 0;
}

访问静态成员函数:

class A
{
public:
    A(int a = 0)
    {
        ++count;
    }

    A(const A &aa)
    {
        ++count;
    }

    // 静态成员函数 -- 没有this指针
    static int GetCount()
    {
        // a++;没有this指针,不能直接访问
        return count;
    }

private:
    static int count;
};

int A::count = 0; // 定义初始化

void func(A)
{
}

int main()
{
    A aa1;
    A aa2(aa1);
    func(aa1);
    A aa3 = 1;

    cout << A::GetCount() << endl;

    return 0;
}

若在main中定义 A aa4[10],那么A类会被调用多少次?

A aa4[10];
cout << A::GetCount() << endl;// 10
//被调用了10次

数组中10个对象,有多少个对象就调用多少次

例子:

class Sum
{
public:
    Sum()
    {
        _sum += _i;
        ++_i;
    }
    static int GetSum()
    {
        return _sum;
    }

private:
    static int _i;
    static int _sum;
};

int Sum::_i = 1;
int Sum::_sum = 0;

匿名对象

匿名对象是在代码中临时创建的一个对象,没有被赋予一个具体的名称。它在具体的语法形式上可以在需要一个对象的表达式中直接创建,而无需为其定义一个变量。

匿名对象不用取名字,用完即销毁 生命周期只有当前行

int main()
{
    Solution s;
    cout<<s.Sum_Solution(10)<<endl;

    //匿名对象,声明周期只在这一行
    Solution();
    Sum();

    return 0;
}

用完即销毁:

cout<<Solution().Sum_Solution(10)<<endl;

友元

友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装所以友元不宜多用

友元分为友元函数友元类

友元函数

友元函数可以直接访问类的私有成员,它是定义在类外部普通函数,不属于任何类,但需要在 类的内部声明,声明时需要加friend关键字。

友元函数不是成员函数,没有this指针,且不能用const修饰

class Date
{
    friend ostream &operator<<(ostream &_cout, const Date &d);
    friend istream &operator>>(istream &_cin, Date &d);

public:
    Date(int year = 1900, int month = 1, int day = 1)
        : _year(year), _month(month), _day(day)
    {
    }

private:
    int _year;
    int _month;
    int _day;
};

ostream &operator<<(ostream &_cout, const Date &d)
{
    _cout << d._year << "-" << d._month << "-" << d._day;
    return _cout;
}
istream &operator>>(istream &_cin, Date &d)
{
    _cin >> d._year;
    _cin >> d._month;
    _cin >> d._day;
    return _cin;
}
int main()
{
    Date d;
    cin >> d;
    cout << d << endl;
    return 0;
}
  • 友元函数可访问类的私有和保护成员,但不是类的成员函数

  • 友元函数不能用const修饰 友元函数可以在类定义的任何地方声明,不受类访问限定符限制

  • 一个函数可以是多个类的友元函数

  • 友元函数的调用与普通函数的调用原理相同


友元类

友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

  • 友元关系是单向的,不具有交换性。 比如上述Time类和Date类,在Time类中声明Date类为其友元类,那么可以在Date类中直接访问Time类的私有成员变量,但想在Time类中访问Date类中私有的成员变量则不行。

  • 友元关系不能传递如果C是B的友元, B是A的友元,则不能说明C时A的友元。

  • 友元关系不能继承,在继承位置再给大家详细介绍。

class Time
{
    friend class Date; // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类 中的私有成员变量
public:
    Time(int hour = 0, int minute = 0, int second = 0)
        : _hour(hour), _minute(minute), _second(second)
    {
    }

private:
    int _hour;
    int _minute;
    int _second;
};

class Date
{
public:
    Date(int year = 1900, int month = 1, int day = 1)
        : _year(year), _month(month), _day(day)
    {
    }
    void SetTimeOfDate(int hour, int minute, int second)
    {
        // 直接访问时间类私有的成员变量 _t._hour = hour; _t._minute = minute; _t._second = second;
    }

private:
    int _year;
    int _month;
    int _day;
    Time _t;
};

内部类

概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类, 它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越 的访问权限。

注意:内部类就是外部类的友元类,参见友元类的定义,内部类可以通过外部类的对象参数来访 问外部类中的所有成员。但是外部类不是内部类的友元。

特性:

  1. 内部类可以定义在外部类的public、protected、private都是可以的。

  2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。

  3. sizeof(外部类)=外部类,和内部类没有任何关系。

class A
{
private:
    int h;

public:
    // 内部类
    class B
    {
    private:
        int b;
    };
};

int main()
{
    A aa;
    cout<<sizeof(aa)<<endl;

    return 0;
}

该代码输出的sizeof大小为 4

内部类:跟A是独立,只是受了A类域的限制

B天生就是A的友元

//访问B
A::B b;
#include <iostream>

class A
{
private:
    int h=1;
    static int k;

public:
    // 内部类
    class B
    {
    public:
        void func(const A& a)
        {
            std::cout << k << std::endl;
            std::cout << a.h << std::endl;
        }
    private:
        int b;
    };
};

// 静态成员变量的定义和初始化
int A::k = 90;

int main()
{
    A aa;
    //std::cout << sizeof(aa) << std::endl;

    // 访问B
    A::B b;
    b.func(aa);//90 1

    return 0;
}
将内部类变为私有
class A
{
private:
    int h = 1;
    static int k;
    class B
    {
    public:
        void func(const A &a)
        {
            std::cout << k << std::endl;
            std::cout << a.h << std::endl;
        }

    private:
        int b;
    };

public:

};

拷贝对象时的一些编译器优化

该主题的讲解将可能会出现偏差,编译器的不同,不同的版本,优化可能不同

class A
{
public:
    A(int a = 0)
        : _a(a)
    {
        cout << "A(int a)" << endl;
    }
    A(const A &aa)
        : _a(aa._a)
    {
        cout << "A(const A& aa)" << endl;
    }
    A &operator=(const A &aa)
    {
        cout << "A& operator=(const A& aa)" << endl;
        if (this != &aa)
        {
            _a = aa._a;
        }
        return *this;
    }
    ~A()
    {
        cout << "~A()" << endl;
    }

private:
    int _a;
};
void f1(A aa)
{}
A f2()
{
    A aa;
    return aa;
}

int main()
{
    A aa1=1;//构造+拷贝构造-》构造
    A aa2(1);

    return 0;
}

构造+拷贝构造过程被直接优化为构造

void func1(A aa)
{

}
//使用引用传参
void func2(const A& aa)//临时对象,匿名对象具有常性,加const
{

}

int main()
{
    A aa1=1;//构造+拷贝构造-> 直接优化为构造
    func1(aa1);//无优化 A(const A& aa)
    func1(2);//构造+拷贝构造-> 直接优化为构造
    func1(A(2));//构造+拷贝构造-> 直接优化为构造

    cout<<"-------------------------------"<<endl;
    //引用传参
    func2(aa1);//无优化 ,无需拷贝
    //临时对象,匿名对象具有常性,func2要加const
    func2(2);//无优化 ,无需拷贝
    func2(A(3));//无优化,无需拷贝  
		//A(3)匿名对象
  
    return 0;
}

A func3()
{
    A aa;//构造
    return aa;//出函数被销毁 ,创建临时变量进行拷贝构造,若出现析构,则为aa,进行了析构
}

int main()
{
    func3();//构造+拷贝构造

    return 0;
}
A aa1=func3();//func3进行一次拷贝构造,aa1=func3再进行一次拷贝构造,优化为一个拷贝构造

    A aa3;
    aa3=func3();

不能进行优化:

对象返回问题 总结:

  1. 接收返回值对象,尽量拷贝构造方式接收,不要赋值接收

  2. 函数中返回对象时,尽量返回匿名对象//return A();

函数传参 总结: 尽量使用const& 传参//(const A& aa)

举报

相关推荐

0 条评论