0
点赞
收藏
分享

微信扫一扫

如何实现DenseNet169.hdf5的具体操作步骤

我阿霆哥 2023-07-13 阅读 32

密集连接网络(DenseNet)简介

密集连接网络(DenseNet)是一种深度学习的卷积神经网络架构,它在2017年由Gao Huang等人提出。相比传统的卷积神经网络,DenseNet引入了密集连接模块,使得网络的特征复用更加充分,降低了梯度消失问题,并且在参数和计算量上也有一定的优势。

密集连接模块

密集连接模块是DenseNet的核心组件,它由多个层级的密集块(Dense Block)组成。每个密集块内的层级都与其他层级直接连接,这意味着输出特征图会被直接传递到后面的层级中。这种密集连接的设计方式增加了特征的复用,使得网络可以更好地学习到特征的组合。

下面是一个密集连接模块的示意图:

![Dense Block](

在密集连接模块中,每个层级的输入由前面所有层级的输出特征图连接而成。具体地,假设一个密集连接模块包含L个层级,那么第l个层级的输入可以表示为:

x_l = H_l([x_0, x_1, ..., x_l-1])

其中,H_l是一个由卷积、批归一化和激活函数组成的层级函数,[x_0, x_1, ..., x_l-1]表示前面所有层级的输出特征图。

DenseNet的实现

DenseNet的实现可以使用各种深度学习框架,例如Keras、PyTorch等。下面是一个使用PyTorch框架实现的DenseNet的代码示例:

import torch
import torch.nn as nn
import torch.nn.functional as F


class DenseBlock(nn.Module):
    def __init__(self, in_channels, growth_rate, num_layers):
        super(DenseBlock, self).__init__()
        self.layers = nn.ModuleList()
        for _ in range(num_layers):
            self.layers.append(self._make_layer(in_channels, growth_rate))
            in_channels += growth_rate

    def _make_layer(self, in_channels, out_channels):
        layer = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False)
        )
        return layer

    def forward(self, x):
        features = [x]
        for layer in self.layers:
            out = layer(torch.cat(features, dim=1))
            features.append(out)
        return torch.cat(features, dim=1)


class TransitionBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(TransitionBlock, self).__init__()
        self.layers = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        return self.layers(x)


class DenseNet(nn.Module):
    def __init__(self, num_classes, growth_rate=32, num_layers=[6, 12, 24, 16]):
        super(DenseNet, self).__init__()
        self.init_conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.init_bn = nn.BatchNorm2d(64)
        self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        in_channels = 64
        self.dense_blocks = nn.ModuleList()
        self.transition_blocks = nn.ModuleList()
        for i, num_layer in enumerate(num_layers):
            self.dense_blocks.append(DenseBlock(in_channels, growth_rate, num_layer))
            in_channels += num_layer * growth_rate
            if i != len(num_layers) - 1:
                out_channels = in_channels // 2
                self.transition_blocks.append(TransitionBlock(in_channels, out_channels))
                in_channels = out_channels

        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(in_channels, num_classes)

    def forward(self, x):
        out = self.init_conv(x)
        out = self.init_bn(out)
        out = F.relu(out, inplace=True)
        out =
举报

相关推荐

0 条评论