0
点赞
收藏
分享

微信扫一扫

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题


根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题

  • ​​1 问题说明​​
  • ​​2 问题解决​​
  • ​​2.1 Seaborn子图覆盖问题解决​​
  • ​​2.2 指定行列生成subplots子图坐标问题解决​​
  • ​​2.3 所有问题解决​​


知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息

1 问题说明

在进行seaborn绘制分类箱型图时,发现批量生成的图形会自动追加到第一个图中,如下

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_根据行列生成坐标


如果是单独进行各区域数据的绘制,都可以正常出图,如下(比如选择朝阳区数据)

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_python绘制子图_02


接着把数据换成海淀区,输出结果如下

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_seaborn图形绘制_03

2 问题解决

2.1 Seaborn子图覆盖问题解决

由于是通过Seaborn进行绘制箱型图,要解决图形不覆盖的问题,就只能进行图形的分配,即子图的绘制,把每一个图形的输出结果都放在一个子图中进行显示,这样最终的结果就不会被覆盖了。

首先子图的绘制,可以参考之前写的博客,Matplotlib库绘图的子图绘制​绘制的方式有多种,这里采用​​subplots​​方法进行子图的绘制,所以要先清楚该方法的输出的信息。

比如指定整个画布分成6个子图,子图按照2行3列的方式排列,其中​​subplots​​中的第一个参数就是代表行,第二个参数代表列

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_python绘制子图_04


获取第一个子图,可以使用​​ax[0][0]​​​,也可以使用​​ax[(0,0)]​​,代码及输出结果如下

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_subplots子图坐标_05


进一步就是如何把子图加载到boxplot中,借助ax参数,就是指定每次绘制的子图的位置,代码如下

fig,ax = plt.subplots(2,3) 
df = data_0[data_0['dist'] == '朝阳']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(0,0)])
df = data_0[data_0['dist'] == '海淀']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(0,1)])

输出结果如下(由此可以发现只要是指定ax中子图的具体坐标就可以解决Seaborn绘制子图覆盖的问题)

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_subplots子图坐标_06


如果是接下来手动指定子图的坐标,直接通过批量赋值后修改一下对应的坐标值就可以将6个子图全部绘制出来,代码如下

fig,ax = plt.subplots(2,3,figsize=(12,8)) 
df = data_0[data_0['dist'] == '朝阳']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(0,0)])
df = data_0[data_0['dist'] == '海淀']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(0,1)])
df = data_0[data_0['dist'] == '丰台']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(0,2)])
df = data_0[data_0['dist'] == '西城']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(1,0)])
df = data_0[data_0['dist'] == '东城']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(1,1)])
df = data_0[data_0['dist'] == '石景山']
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax=ax[(1,2)])

输出结果如下。(可以解决Seaborn绘制子图覆盖的问题,但是可以发现这种操作会有大量的代码重复)

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_图形覆盖_07

2.2 指定行列生成subplots子图坐标问题解决

观察重复的代码中,有变化的只有两处,一个就是城区的选择,还有一个就是子图坐标的设置。其中前者很好进行处理,就是通过unique方法直接获取对应的区域数据即可,代码及输出结果如下。

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_python绘制子图_08


第二个问题就是要充分考虑子图坐标的特点:坐标的值,最小的是从(0,0)开始,最大的就是比指定行列数值都小1(比如上图指定的是2行3列,最后的子图坐标就是[(1,2)],按照这个特点进行子图坐标的生成,直接给出封装好的函数,代码如下。

def generate_axis(rows,cols):
return [(row,col) for row in range(rows) for col in range(cols)]
generate_axis(2,3)

输出结果如下(封装函数的好处在于之后再次遇到此类问题,就可以直接拿来使用,不用再多余进行重新设置,这里还进行了3行2列坐标的生成,验证结果输出无误)

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_图形覆盖_09

2.3 所有问题解决

将2.1和2.2的问题解决方法进行结合,就可以完美的实现要求,代码如下

fig,ax = plt.subplots(2,3,figsize=(12,8)) 
nums = generate_axis(2,3)
zones = data_0.dist.unique()
for i in range(len(zones)):
df = data_0[data_0['dist'] == zones[i]]
sns.boxplot(x = 'dist',y = 'price',data = df,hue = 'school',ax = ax[nums[i]])

输出结果如下(顺利解决问题,完结撒花✿✿ヽ(°▽°)ノ✿)

【疑难杂症】根据指定行列生成subplots子图坐标,解决Seaborn子图覆盖问题_subplots子图坐标_10


举报

相关推荐

0 条评论