项目地址:GitHub - utkuozdemir/nvidia_gpu_exporter: Nvidia GPU exporter for prometheus using nvidia-smi binary
根据git上面的nvidia监控项目,可以实现grafana监控GPU,但是git上面提供的utkuozdemir/nvidia_gpu_exporter:0.3.0这个镜像只可以在ubuntu系统上面运行,如果在centos上运行,日志会提示无法获取到GPU信息,也就导致无法接到k8s的prometheus.目前使用的方法是将nvidia_gpu_exporter这个可执行访问下载到centos系统中,然后通过系统命令运行,最终得到一个服务,也就是gpu的metircs。然后在k8s中,创建endpoinst、service、servicemonitor,实现prometheus收集到gpu-metrics信息,最后通过grafana进行可视化展示。下面是具体操作步骤:
1 在centos系统中有创建nvidia_gpu_exporter服务
安装nvidia_gpu_exporter服务
此时通过web页面就可查看此台GPU服务器的gpu-metircs信息,如下图 
可以看到GPU相关信息 创建nvidia_gpu_exporter服务
[Unit] Description=Nvidia GPU Exporter After=network-online.target
[Service] Type=simple
User=nvidia_gpu_exporter Group=nvidia_gpu_exporter
ExecStart=/usr/local/bin/nvidia_gpu_exporter
SyslogIdentifier=nvidia_gpu_exporter
Restart=always RestartSec=1
NoNewPrivileges=yes
ProtectHome=yes ProtectSystem=strict ProtectControlGroups=true ProtectKernelModules=true ProtectKernelTunables=yes ProtectHostname=yes ProtectKernelLogs=yes ProtectProc=yes
[Install] WantedBy=multi-user.target
[root@k8s-gpu4 ~] [root@k8s-gpu4 ~] [root@k8s-gpu4 ~] ● nvidia_gpu_exporter.service - Nvidia GPU Exporter Loaded: loaded (/etc/systemd/system/nvidia_gpu_exporter.service; enabled; vendor preset: disabled) Active: active (running) since Fri 2022-05-13 17:36:03 CST; 5s ago Main PID: 80178 (nvidia_gpu_expo) Tasks: 6 Memory: 5.6M CGroup: /system.slice/nvidia_gpu_exporter.service └─80178 /usr/local/bin/nvidia_gpu_exporter
May 13 17:36:03 k8s-gpu4 systemd[1]: Started Nvidia GPU Exporter. May 13 17:36:04 k8s-gpu4 nvidia_gpu_exporter[80178]: ts=2022-05-13T09:36:04.005Z caller=main.go:68 level=info msg="Listening on add...=:9835 May 13 17:36:04 k8s-gpu4 nvidia_gpu_exporter[80178]: ts=2022-05-13T09:36:04.006Z caller=tls_config.go:195 level=info msg="TLS is di...=false Hint: Some lines were ellipsized, use -l to show in full.
服务启动成功,通过页面查看 
|
2 在k8s中创建endpoints、service、servicemonitor
- 创建endpoints
apiVersion: v1 kind: Endpoints metadata: name: nvidia-gpu-exporter namespace: monitoring subsets: - addresses: - ip: 10.1.12.17 ports: - name: http port: 9835 protocol: TCP
上面的ip为GPU服务器地址,如果是多台GPU,可在下面继续添加,如 - ip: *.*.*.* - ip: *.*.*.*
endpoints/nvidia-gpu-exporter created
NAME ENDPOINTS AGE nvidia-gpu-exporter 10.1.12.17:9835 39s
Name: nvidia-gpu-exporter Namespace: monitoring Labels: <none> Annotations: <none> Subsets: Addresses: 10.1.12.17 NotReadyAddresses: <none> Ports: Name Port Protocol ---- ---- -------- http 9835 TCP
Events: <none>
- 创建service
apiVersion: v1 kind: Service metadata: labels: app: nvidia-gpu-exporter name: nvidia-gpu-exporter namespace: monitoring spec: ports: - name: http protocol: TCP port: 9835 targetPort: http type: ClusterIP
service "nvidia-gpu-exporter" deleted kubectl create -f gpu-exporter-svc.yaml service/nvidia-gpu-exporter created
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE nvidia-gpu-exporter ClusterIP 10.10.75.226 <none> 9835/TCP 12s
Name: nvidia-gpu-exporter Namespace: monitoring Labels: app=nvidia-gpu-exporter Annotations: <none> Selector: <none> Type: ClusterIP IP: 10.10.235.70 Port: http 9835/TCP TargetPort: http/TCP Endpoints: 10.1.12.17:9835 Session Affinity: None Events: <none>
上面的endpioins一定要为上面创建的endpoints中的IP和port
- 创建servicemonitor
apiVersion: monitoring.coreos.com/v1 kind: ServiceMonitor metadata: labels: app: nvidia-gpu-exporter name: nvidia-gpu-exporter namespace: monitoring spec: endpoints: - interval: 30s port: http jobLabel: app selector: matchLabels: app: nvidia-gpu-exporter kubectl create -f gpu-exporter-serviceMonitor.yaml servicemonitor.monitoring.coreos.com/nvidia-gpu-exporter created [root@k8s-master dongtai] NAME AGE nvidia-gpu-exporter 12s
Name: nvidia-gpu-exporter Namespace: monitoring Labels: app=nvidia-gpu-exporter Annotations: <none> API Version: monitoring.coreos.com/v1 Kind: ServiceMonitor Metadata: Creation Timestamp: 2022-05-13T09:50:35Z Generation: 1 Managed Fields: API Version: monitoring.coreos.com/v1 Fields Type: FieldsV1 fieldsV1: f:metadata: f:labels: .: f:app: f:spec: .: f:endpoints: f:jobLabel: f:selector: .: f:matchLabels: .: f:app: Manager: kubectl-create Operation: Update Time: 2022-05-13T09:50:35Z Resource Version: 14080381 Self Link: /apis/monitoring.coreos.com/v1/namespaces/monitoring/servicemonitors/nvidia-gpu-exporter UID: 7fdb365b-8bcd-4fc2-9772-9ad7de6155bf Spec: Endpoints: Interval: 30s Port: http Job Label: app Selector: Match Labels: App: nvidia-gpu-exporter Events: <none>
- prometheus页面验证
在prometheus页面的targets中查看nvidia_gpu_exporter
在Graph页面中进行nvidia搜索
通过搜索可以得到这台GPU服务器有两张3090GPU |
3 在grafana中创建GPU监控面板
在grafana导入官方提供的json文件 


导入官方的json文件会出现错误提示,原因是这个json文件配置有问题,我们需要进行修改。 点击右上角进行修改 
点击Variables,点击gpu 
将Query改成如下,改完后,可以得到GPU服务器的IP,最后点击update 
返回监控页后,可以得到如下图: 
最终GPU相关的性能指标能得到很好展示 |