0
点赞
收藏
分享

微信扫一扫

Pandas(三)-数据结构:DataFrame【二维数组】

  • DataFrame
    • 创建
      • pd.DataFrame(data=None, index=None, columns=None)
    • 属性
      • shape – 形状
      • index – 行索引
      • columns – 列索引
      • values – 查看值
      • T – 转置
      • head() – 查看头部内容
      • tail() – 查看尾部内容
    • DataFrame索引
      • 修改的时候,需要进行全局修改
      • 对象.reset_index()
      • 对象.set_index(keys)

2.DataFrame

DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引

  • 行索引,表明不同行,横向索引,叫index,0轴,axis=0
  • 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1

在这里插入图片描述

2.1 DataFrame的创建

# 导入pandas
import pandas as pd

pd.DataFrame(data=None, index=None, columns=None)
  • 参数:

    • index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    • columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
  • 通过已有数据创建

举例一:

pd.DataFrame(np.random.randn(2,3))

在这里插入图片描述

回忆咱们在前面直接使用np创建的数组显示方式,比较两者的区别。

举例二:创建学生成绩表

# 生成10名同学,5门功课的数据
score = np.random.randint(40, 100, (10, 5))

# 结果
array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

但是这样的数据形式很难看到存储的是什么的样的数据,可读性比较差!!

问题:如何让数据更有意义的显示

# 使用Pandas中的数据结构
score_df = pd.DataFrame(score)

在这里插入图片描述

给分数数据增加行列索引,显示效果更佳

效果:

在这里插入图片描述

  • 增加行、列索引
# 构造行索引序列
subjects = ["语文", "数学", "英语", "政治", "体育"]

# 构造列索引序列
stu = ['同学' + str(i) for i in range(score_df.shape[0])]

# 添加行索引
data = pd.DataFrame(score, columns=subjects, index=stu)

2.2 DataFrame的属性

  • shape
data.shape

# 结果
(10, 5)
  • index

DataFrame的行索引列表

data.index

# 结果
Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
  • columns

DataFrame的列索引列表

data.columns

# 结果
Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')
  • values

直接获取其中array的值

data.values

array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])
  • T

转置

data.T

结果

在这里插入图片描述

  • head(5):显示前5行内容

如果不补充参数,默认5行。填入参数N则显示前N行

data.head(5)

在这里插入图片描述

  • tail(5):显示后5行内容

如果不补充参数,默认5行。填入参数N则显示后N行

data.tail(5)

2.3 DatatFrame索引的设置

需求:

在这里插入图片描述

2.3.1 修改行列索引值

stu = ["学生_" + str(i) for i in range(score_df.shape[0])]

# 必须整体全部修改
data.index = stu

注意:以下修改方式是错误的

# 错误修改方式
data.index[3] = '学生_3'

2.3.2 重设索引

  • reset_index(drop=False)
    • 设置新的下标索引
    • drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
# 重置索引,drop=False
data.reset_index()

在这里插入图片描述

# 重置索引,drop=True
data.reset_index(drop=True)

2.3.3 以某列值设置为新的索引

  • set_index(keys, drop=True)
    • keys : 列索引名成或者列索引名称的列表
    • drop : boolean, default True.当做新的索引,删除原来的列

设置新索引案例

1、创建

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

2、以月份设置新的索引

df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

3、设置多个索引,以年和月份

df = df.set_index(['year', 'month'])
df
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31
举报

相关推荐

0 条评论