电影推荐系统
技术栈:python + django + sqlite + scrapy爬虫
**推荐算法:**基于用户的协同过滤算法 + 基于项目的协同过滤算法
首先使用Scrapy爬虫工具爬取豆瓣网站关于中国大陆红色教育电影的数据集,经过数据重组和筛选,基于两种推荐算法得出推荐结果保存至SQLite 数据库中,并通过Django 框架进行前端展示。
推荐过程:
系统运行结果:
推荐算法实现:
class UserCf:
# 获得初始化数据
def __init__(self, all_user):
self.all_user = all_user
# 通过用户名获得商品列表,仅调试使用
def getItems(self, username1, username2):
return self.all_user[username1], self.all_user[username2]
# 计算两个用户的皮尔逊相关系数
def pearson(self, user1, user2): # 数据格式为:商品id,浏览此
sum_xy = 0.0 # user1,user2 每项打分的成绩的累加
n = 0 # 公共浏览次数
sum_x = 0.0 # user1 的打分总和
sum_y = 0.0 # user2 的打分总和
sumX2 = 0.0 # user1每项打分平方的累加
sumY2 = 0.0 # user2每项打分平方的累加
for movie1, score1 in user1.items():
if movie1 in user2.keys(): # 计算公共的浏览次数
n += 1
sum_xy += score1 * user2[movie1]
sum_x += score1
sum_y += user2[movie1]
sumX2 += pow(score1, 2)
sumY2 += pow(user2[movie1], 2)
if n == 0:
# print("p氏距离为0")
return 0
molecule = sum_xy - (sum_x * sum_y) / n # 分子
denominator = sqrt((sumX2 - pow(sum_x, 2) / n) * (sumY2 - pow(sum_y, 2) / n)) # 分母
if denominator == 0:
return 0
r = molecule / denominator
return r
# 计算与当前用户的距离,获得最临近的用户
def nearest_user(self, current_user, n=1):
distances = {}
# 用户,相似度
# 遍历整个数据集
for user, rate_set in self.all_user.items():
# 非当前的用户
if user != current_user:
distance = self.pearson(self.all_user[current_user], self.all_user[user])
# 计算两个用户的相似度
distances[user] = distance
closest_distance = sorted(
distances.items(), key=operator.itemgetter(1), reverse=True
)
# 最相似的N个用户
# print("closest user:", closest_distance[:n])
return closest_distance[:n]
# 给用户推荐商品
def recommend(self, username, n=3):
recommend = {}
nearest_user = self.nearest_user(username, n)
for user, score in dict(nearest_user).items(): # 最相近的n个用户
for movies, scores in self.all_user[user].items(): # 推荐的用户的商品列表
if movies not in self.all_user[username].keys(): # 当前username没有看过
if movies not in recommend.keys(): # 添加到推荐列表中
recommend[movies] = scores*score
# 对推荐的结果按照商品浏览次数排序
return sorted(recommend.items(), key=operator.itemgetter(1), reverse=True)
# 入口函数
def recommend_by_user_id(user_id):
user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
current_user = User.objects.get(id=user_id)
# 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
# 没有的话,就按照浏览度推荐15个
if current_user.rate_set.count() == 0:
if len(user_prefer) != 0:
movie_list = Movie.objects.filter(tags__in=user_prefer)[:15]
else:
movie_list = Movie.objects.order_by("-num")[:15]
return movie_list
# 选取评分最多的10个用户
users_rate = Rate.objects.values('user').annotate(mark_num=Count('user')).order_by('-mark_num')
user_ids = [user_rate['user'] for user_rate in users_rate]
user_ids.append(user_id)
users = User.objects.filter(id__in=user_ids)
all_user = {}
for user in users:
rates = user.rate_set.all()
rate = {}
# 用户有给电影打分 在rate和all_user中进行设置
if rates:
for i in rates:
rate.setdefault(str(i.movie.id), i.mark)
all_user.setdefault(user.username, rate)
else:
# 用户没有为电影打过分,设为0
all_user.setdefault(user.username, {})
user_cf = UserCf(all_user=all_user)
recommend_list = [each[0] for each in user_cf.recommend(current_user.username, 15)]
movie_list = list(Movie.objects.filter(id__in=recommend_list).order_by("-num")[:15])
other_length = 15 - len(movie_list)
if other_length > 0:
fix_list = Movie.objects.filter(~Q(rate__user_id=user_id)).order_by('-collect')
for fix in fix_list:
if fix not in movie_list:
movie_list.append(fix)
if len(movie_list) >= 15:
break
return movie_list
# 计算相似度
def similarity(movie1_id, movie2_id):
movie1_set = Rate.objects.filter(movie_id=movie1_id)
# movie1的打分用户数
movie1_sum = movie1_set.count()
# movie_2的打分用户数
movie2_sum = Rate.objects.filter(movie_id=movie2_id).count()
# 两者的交集
common = Rate.objects.filter(user_id__in=Subquery(movie1_set.values('user_id')), movie=movie2_id).values('user_id').count()
# 没有人给当前电影打分
if movie1_sum == 0 or movie2_sum == 0:
return 0
similar_value = common / sqrt(movie1_sum * movie2_sum)
return similar_value
#
def recommend_by_item_id(user_id, k=15):
# 前三的tag
user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
user_prefer = list(user_prefer)[:3]
current_user = User.objects.get(id=user_id)
# 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
# 没有的话,就按照浏览度推荐15个
if current_user.rate_set.count() == 0:
if len(user_prefer) != 0:
movie_list = Movie.objects.filter(tags__in=user_prefer)[:15]
else:
movie_list = Movie.objects.order_by("-num")[:15]
print('from here')
return movie_list
# most_tags = Tags.objects.annotate(tags_sum=Count('name')).order_by('-tags_sum').filter(movie__rate__user_id=user_id).order_by('-tags_sum')
# 选用户最喜欢的标签中的电影,用户没看过的30部,对这30部电影,计算距离最近
un_watched = Movie.objects.filter(~Q(rate__user_id=user_id), tags__in=user_prefer).order_by('?')[:30] # 看过的电影
watched = Rate.objects.filter(user_id=user_id).values_list('movie_id', 'mark')
distances = []
names = []
# 在未看过的电影中找到
# 后续改进,选择top15
for un_watched_movie in un_watched:
for watched_movie in watched:
if un_watched_movie not in names:
names.append(un_watched_movie)
distances.append((similarity(un_watched_movie.id, watched_movie[0]) * watched_movie[1], un_watched_movie))
distances.sort(key=lambda x: x[0], reverse=True)
print('this is distances', distances[:15])
recommend_list = []
for mark, movie in distances:
if len(recommend_list) >= k:
break
if movie not in recommend_list:
recommend_list.append(movie)
# print('this is recommend list', recommend_list)
# 如果得不到有效数量的推荐 按照未看过的电影中的热度进行填充
print('recommend list', recommend_list)
return recommend_list
if __name__ == '__main__':
similarity(2003, 2008)
recommend_by_item_id(1)
爬取豆瓣电影爬虫实现:
class MovieSpider(scrapy.Spider):
name = 'movie'
allowed_domains = ['movie.douban.com']
base_url = "https://movie.douban.com/j/new_search_subjects?sort=U&range=0,10&tags=&start={page}&genres={genres}&countries={countries}&limit=150"
def start_requests(self):
genres = "战争"
countries = "中国大陆"
bid = ''.join(random.choice(string.ascii_letters + string.digits) for x in range(11))
cookies = {'bid': bid}
yield Request(self.base_url.format(page=0, genres=genres, countries=countries), callback=self.parse,
meta={'page': 0, 'genres': genres, 'countries': countries}, cookies=cookies)
def parse(self, response):
result = json.loads(response.text)
if len(result.get('data')) != 0:
for node in result.get('data'):
id = node.get('id')
bid = ''.join(random.choice(string.ascii_letters + string.digits) for x in range(11))
cookies = {'bid': bid}
yield Request(url='https://movie.douban.com/subject/{}/'.format(id), callback=self.parse_subject,
meta={'id': id}, cookies=cookies)
# 翻页
page = response.meta['page']
if page < 600:
page = page + 150
genres = response.meta['genres']
countries = response.meta['countries']
yield Request(self.base_url.format(page=page, genres=genres, countries=countries), callback=self.parse,
meta={'page': page, 'genres': genres, 'countries': countries})
def parse_subject(self, response):
item = RedmovieItem()
id = response.meta['id']
# item['douban_movie_id'] = id
# 电影名
item['movie_name'] = response.xpath('//span[@property="v:itemreviewed"]/text()').extract()[0]
# 导演
directors = ';'.join(response.xpath('//*[@rel="v:directedBy"]/text()').extract())
if len(directors) != 0:
item['movie_directors'] = directors
else:
item['movie_directors'] = None
# 制片国家/地区
try:
item['movie_country'] = response.xpath('//*[@id="info"]').re('制片国家/地区:</span>\s(.*)<br>')[0]
except IndexError:
item['movie_country'] = None
# 上映日期
Date = ';'.join(response.xpath('//span[@property="v:initialReleaseDate"]/text()').extract())
if len(Date) != 0:
item['movie_years'] = Date.split('(')[0]
else:
item['movie_years'] = None
# 主演
movie_leader = ';'.join(response.xpath('//*[@rel="v:starring"]/text()').extract())
if len(movie_leader) != 0:
item['movie_leader'] = movie_leader
else:
item['movie_leader'] = None
# 评分人数
item['movie_d_rate_nums'] = response.xpath('//span[@property="v:votes"]/text()').extract_first()
# 评分
item['movie_d_rate'] = response.xpath('//strong[@property="v:average"]/text()').extract_first()
# 简介
item['movie_intro'] = response.xpath('//span[@property="v:summary"]/text()').extract_first().strip()
# 封面原始链接
item['movie_origin_image_link'] = response.xpath('//*[@rel="v:image"]/@src').extract()[0]
# 封面本地地址
item['movie_image_link'] = "movie_cover/" + item['movie_name'] + ".jpg"
# 链接
item['movie_imdb_link'] = 'https://movie.douban.com/subject/{}/'.format(id)
# print(item)
yield item
# # # 链接
# # item['url'] = 'https://movie.douban.com/subject/{}/'.format(id)
# #
# # 封面链接
# item['cover'] = response.xpath('//*[@rel="v:image"]/@src').extract()[0]
#
# # # 编剧
# # scriptwriter = ';'.join(
# # response.xpath('//span[contains(text(),"编剧")]/..//span[@class="attrs"]/a/text()').extract())
# # if len(scriptwriter) != 0:
# # item['scriptwriter'] = scriptwriter
# # else:
# # item['scriptwriter'] = None
# #
#
# #
# # # 类型
# # item['type'] = '/'.join(response.xpath('//span[@property="v:genre"]//text()').extract())
# #
#
#
# # # 评分语言
# # try:
# # item['language'] = response.xpath('//*[@id="info"]').re('语言:</span>\s(.*)<br>')[0]
# # except IndexError:
# # item['language'] = None
# #
# # # 片长
# # if response.xpath('//span[@property="v:runtime"]/text()').extract():
# # item['runtime'] = response.xpath('//span[@property="v:runtime"]/text()').extract()[0]
# # elif response.xpath('//*[@id="info"]').re('片长:</span>\s(.*)<br>'):
# # item['runtime'] = response.xpath('//*[@id="info"]').re('片长:</span>\s(.*)<br>')[0]
# # else:
# # item['runtime'] = None
# #
# # # IMDb
# # try:
# # item['IMDb'] = \
# # response.xpath('//a[@rel="nofollow" and contains(@href, "www.imdb.com/title/")]/@href').extract()[0]
# # except IndexError:
# # item['IMDb'] = None
# # else:
# # item['runtime'] = None
# #
# # # IMDb
# # try:
# # item['IMDb'] = \
# # response.xpath('//a[@rel="nofollow" and contains(@href, "www.imdb.com/title/")]/@href').extract()[0]
# # except IndexError:
# # item['IMDb'] = None