MPEG(Moving Picture Experts Group)是一组视频压缩算法标准,用于对视频进行压缩和编码。MPEG算法的主要目标是在保持较高视频质量的同时,实现较高的压缩比。
MPEG算法涉及多个阶段,包括空域预处理、变换编码、运动估计与补偿、熵编码等。下面是MPEG算法的主要步骤:
以上是MPEG算法的基本步骤,实际的MPEG标准包含许多细节和参数设置,如GOP结构、码率控制、渐进传输等。具体的MPEG算法和参数会根据不同的标准(如MPEG-1、MPEG-2、MPEG-4等)而有所区别。
下面是一个简单的MPEG压缩算法的代码例程:
import cv2 import numpy as np
def compress_frames(frames): compressed_frames = []
for frame in frames:
# 转换为YUV颜色空间
yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV)
# 分割成8x8块
blocks = [yuv_frame[j:j+8, i:i+8] for j in range(0, yuv_frame.shape[0], 8)
for i in range(0, yuv_frame.shape[1], 8)]
compressed_blocks = []
for block in blocks:
# 应用离散余弦变换(DCT)
dct_block = cv2.dct(np.float32(block))
# 量化
quantized_block = np.round(dct_block / quantization_matrix)
compressed_blocks.append(quantized_block)
compressed_frames.append(compressed_blocks)
return compressed_frames
def decompress_frames(compressed_frames): decompressed_frames = []
for frame in compressed_frames:
decompressed_blocks = []
for block in frame:
# 反量化
quantized_block = block * quantization_matrix
# 反DCT变换
idct_block = cv2.idct(np.float32(quantized_block))
decompressed_blocks.append(idct_block)
# 合并块
yuv_frame = np.vstack([np.hstack(decompressed_blocks[i:i+int(yuv_frame.shape[1]/8)])
for i in range(0, len(decompressed_blocks), int(yuv_frame.shape[1]/8))])
# 转换回RGB颜色空间
decompressed_frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR)
decompressed_frames.append(decompressed_frame)
return decompressed_frames
假设quantization_matrix是一个8x8的量化矩阵(包含MPEG标准或自定义的值)
quantization_matrix = np.array([...])
加载视频
video = cv2.VideoCapture('input.mp4')
frames = [] while True: ret, frame = video.read() if not ret: break frames.append(frame)
压缩视频帧
compressed_frames = compress_frames(frames)
解压缩视频帧
decompressed_frames = decompress_frames(compressed_frames)
保存解压缩后的视频
output_video = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 30.0, (640, 480)) for frame in decompressed_frames: output_video.write(frame) output_video.release()