0
点赞
收藏
分享

微信扫一扫

R语言【taxlist】——taxon_views(),add_view():分类列表中概念视图的管理。

场景

之前尝试用knn算法尝试一个图像识别(给苹果,香蕉分类)的案例,很吃性能且准确率不佳。支持向量机(SVM)是一种广泛应用于分类和回归问题的强大监督学习算法。就很适用于这种场景。

概念

支持向量(Support Vectors)

在支持向量机(SVM)中,支持向量是非常核心的概念。它们是离分隔超平面最近的那些数据点。这些点实际上支撑着或定义了超平面的位置和方向。在SVM模型中,只有支持向量才会影响最终决策边界的位置;其他的数据点并不会对其产生影响。

支持向量的重要性

定义边界:支持向量是最优超平面的关键组成部分,因为它们直接定义了分类间隔的边界。

模型简洁性:在SVM中,只有支持向量对模型的建立是重要的。这意味着,尽管训练数据可能非常庞大,但最终模型的复杂度却由较少数目的支持向量决定,从而提高了模型的计算效率。

鲁棒性:由于只有支持向量影响决策边界,因此SVM对于数据中的噪声和非支持向量点的变化相对不敏感,增强了模型的泛化能力。

假设我们在二维空间中有两类数据点,一类为正类,另一类为负类。SVM的目标是找到一条直线(即超平面)来尽可能完美地分隔这两类点。这条直线的位置由离它最近的几个点(即支持向量)决定。这些点的位置决定了直线的方向和位置,从而确定了分类的最佳边界。

鲁棒性(Robustness)

处理现实世界数据:现实世界的数据往往包含噪声、缺失值或异常值。鲁棒性强的模型能够有效处理这些不完美的数据,提供可靠的输出。这和之前的Knn算法,还有香农熵算法、概率论算法对数据的比较严格的要求不同。

提高泛化能力:鲁棒的模型在面对新的、未见过的数据时表现更好,具有更强的泛化能力。

减少对数据预处理的依赖:如果一个模型足够鲁棒,它可以减少对数据清洗和预处理的需求,从而简化模型的应用过程。

鲁棒性在SVM中的体现
在支持向量机(SVM)中,鲁棒性体现在其对于支持向量以外的数据点不敏感的特性。SVM的决策边界(超平面)主要由支持向量决定,这意味着非支持向量的数据点,即使包含噪声或异常值,也不会显著影响模型的决策边界。这使得SVM在处理包含一些噪声或异常值的数据时,仍能保持较好的性能,显示出较强的鲁棒性。

回到案例

假设我们在二维空间中有两类数据点,一类为正类,另一类为负类。SVM的目标是找到一条直线(即超平面)来尽可能完美地分隔这两类点。这条直线的位置由离它最近的几个点(即支持向量)决定。这些点的位置决定了直线的方向和位置,从而确定了分类的最佳边界。 这个过程是怎样的呢?

结束

这一把只是我的简单理论。上次正式开始。

举报

相关推荐

0 条评论