0
点赞
收藏
分享

微信扫一扫

FZU - 2214 Knapsack problem(0 1 背包++)

_鱼与渔_ 2022-10-18 阅读 157


​​FZU - 2214    Knapsack problem​​

Accept: 837    Submit: 3249
Time Limit: 3000 mSec    Memory Limit : 32768 KB

Problem Description


Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).


Input


The first line contains the integer T indicating to the number of test cases.

For each test case, the first line contains the integers n and B.

Following n lines provide the information of each item.

The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.

1 <= number of test cases <= 100

1 <= n <= 500

1 <= B, w[i] <= 1000000000

1 <= v[1]+v[2]+...+v[n] <= 5000

All the inputs are integers.


Output


For each test case, output the maximum value.


Sample Input


15 1512 42 21 14 101 2


Sample Output


15


这道题是0-1背包类的问题,但是不同的是这道题的w[i]非常大,最大为1e9,


emmm,先粘一下普通代码:

for(int i=0;i<n;i++)
for(int j=0;j<=W;j++)
if(j<w[i]) dp[i+1][j]=dp[i][j];
else dp[i+1][j]=max(dp[i][j],dp[i][j-w[i]]+v[i]);
printf("%d\n",dp[n][W]);

或者:

for(int i=n-1;i>=0;i--)
for(int j=0;j<=W;j++)
if(j<w[i]) dp[i][j]=dp[i+1][j];
else dp[i][j]=max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]);

printf("%d\n",dp[0][W]);


这上边的代码时间复杂度是O(nW)

如果做这一道题的话,肯定会超时的啊

所以这一道题DP的对象是价值  v[i]


// 这一道题  DP的对象是价值  v[i] 

//#include<bits/stdc++.h> //CE
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=505;
const int MAXV=5000+5;
const int INF=0x3f3f3f3f;
int dp[MAXN][MAXV];
int n,b;
int w[MAXN],v[MAXN];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&b);
for(int i=0;i<n;i++) scanf("%d %d",&w[i],&v[i]);
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<=MAXV;j++)
{
if(j<v[i]) dp[i+1][j]=dp[i][j];
else dp[i+1][j]=min(dp[i][j],dp[i][j-v[i]]+w[i]);
}
}
int res=0;
for(int i=0;i<=5000;i++) if(dp[n][i]<=b) res=i;//这里的 i<=5000 一定要这样
printf("%d\n",res);
}
return 0;
}

参考白书,第61页


本人实力有限,如有错误请您指出,谢谢。





举报

相关推荐

0 条评论