题意: 大概意思是有 n 个点,现在有 q 个方案 ,第 i 个方案耗费为 ci ,使 Ni 个点联通 ,当然也可以直接使两点联通 ,现求最小生成树的代价。两点直接联通的代价是欧几里得距离的平方; 由于0<=q<=8,所以我们考虑二进制枚举;该位为1表示选择该方案,然后每次求一遍cost ,最后取 min 即可;#include#include#include#include#include#include#include#include#include#include#include#include#include#include#include#include#include//#include//#pragma GCC optimize("O3")using namespace std;#define maxn 1000005#define inf 0x3f3f3f3f#define INF 9999999999#define rdint(x) scanf("%d",&x)#define rdllt(x) scanf("%lld",&x)#define rdult(x) scanf("%lu",&x)#define rdlf(x) scanf("%lf",&x)#define rdstr(x) scanf("%s",x)typedef long long ll;typedef unsigned long long ull;typedef unsigned int U;#define ms(x) memset((x),0,sizeof(x))const long long int mod = 1e9 + 7;#define Mod 1000000000#define sq(x) (x)*(x)#define eps 1e-3typedef pair pii;#define pi acos(-1.0)const int N = 1005;#define REP(i,n) for(int i=0;i<(n);i++)typedef pair pii;inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x;}ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b);}ll sqr(ll x) { return x * x; }/*ll ans;ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans;}*/ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans;}int T;int n, q;int cost[maxn];int fa[maxn];int cnt;vectorvc[maxn];struct point { int x, y;}pint[maxn];struct node { int x, y; int w;}edge[maxn];bool cmp(node a, node b) { return a.w < b.w;}int dis(int a, int b, int x, int y) { return ((a - x)*(a - x) + (b - y)*(b - y));}void init(int n) { for (int i = 0; i <= n; i++)fa[i] = i;}int findfa(int x) { if (x == fa[x])return x; return fa[x] = findfa(fa[x]);}void Union(int p, int q) { if (findfa(q) != findfa(p)) { fa[findfa(p)] = findfa(q); }}int ans;int kruskal() { int res = 0; int ct = 0; for (int i = 0; i < cnt; i++) { int u = edge[i].x; int v = edge[i].y; if (findfa(u) != findfa(v)) { Union(u, v); res += edge[i].w; ct++; if (ct == n - 1)break; } } return res;}void sol() { init(n); ans = kruskal(); for (int i = 0; i < (1 << q); i++) { init(n);int cst = 0; for (int j = 0; j < q; j++) { if (((i >> j) & 1)==0)continue; cst += cost[j]; for (int k = 1; k < vc[j].size(); k++) { Union(vc[j][k], vc[j][0]); } } ans = min(ans, cst + kruskal()); } printf("%d\n", ans);}int main(){ //ios::sync_with_stdio(0); rdint(T); int kase = 1; while (T--) { if (kase > 1)printf("\n"); kase++; rdint(n); rdint(q); cnt = 0; for (int i = 0; i < 10; i++)vc[i].clear(); for (int i = 0; i < q; i++) { int tmp; rdint(tmp); rdint(cost[i]); while (tmp--) { int x; rdint(x); vc[i].push_back(x); } } for (int i = 1; i <= n; i++) { rdint(pint[i].x); rdint(pint[i].y); } for (int i = 1; i <= n; i++) { for (int j = i + 1; j <= n; j++) { edge[cnt].x = i; edge[cnt].y = j; edge[cnt].w = dis(pint[i].x, pint[i].y, pint[j].x, pint[j].y); cnt++; } } sort(edge, edge + cnt, cmp); sol(); } return 0;} EPFL - Fighting