文章目录
- 1.软件安装
- 1.1 opencv安装
- 1.2 Tensorrt安装
- 2.编译tensorrtx/yolov5
- 3. INT8量化
1.软件安装
默认已经安装好了cuda、cudnn
我的cuda为11.1,cudnn为适配的版本
1.1 opencv安装
https://github.com/opencv/opencv/releases
tar xvf opencv-3.4.4.tar.gz
cd opencv-3.4.4
mkdir build
cd build
cmake ..
make
sudo make install
1.2 Tensorrt安装
https://developer.nvidia.com/nvidia-tensorrt-7x-download
解压压缩包
tar xvf TensorRT-7.2.3.4.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.1.tar.gz
环境变量设置
vim ~/.bashrc
export TR_PATH=/home/zc/yp/lib/TensorRT-7.2.3.4
export PATH=$PATH:$TR_PATH/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TR_PATH/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TR_PATH/targets/x86_64-linux-gnu/lib
source ~/.bashrc
cd TensorRT-7.x.x.x/python
pip install tensorrt-7.x.x.x-cp3x-none-linux_x86_64.whl
cd TensorRT-7.x.x.x/graphsurgeon
pip install graphsurgeon-0.4.1-py2.py3-none-any.whl
cd TensorRT-7.x.x.x/uff
pip install uff-0.7.5-py2.py3-none-any.whl
进入到tensorrt目录下,将下列文件夹复制到对于系统文件夹
sudo cp -r ./lib/* /usr/lib
sudo cp -r ./include/* /usr/include
安装pycuda
pip install pycuda
测试TensorRT
2.编译tensorrtx/yolov5
https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v5.0/yolov5
python版本下(未做tensorRT加速)
3. INT8量化
将coco_calib.zip解压到build目录下
cd build
make clean
cmake ..
make
序列化模型
./yolov5 -s yolov5s.wts yolov5s.engine s
测试
./yolov5 -d yolov5s.engine ../samples