0
点赞
收藏
分享

微信扫一扫

使用 -D_GLIBCXX_PARALLEL -fopenmp 开启并行STL之旅

倪雅各 2022-04-05 阅读 133
c++

最近在看现代C++白皮书,看到C++17引入了并行STL。

先说自己探索的结论,目前的gcc/g++只需要在编译是添加参数 -D_GLIBCXX_PARALLEL -fopenmp 即可达到并行化的效果,不需要对源码进行修改。

网上已有的方法,需要添加头文件#include <execution> ,还需要形如 sort(execution::par, begin(d), end(d));一样设置并行化算法。

#include <algorithm>
#include <execution>
#include <iostream>
#include <random>
#include <chrono>   

using namespace std;
using namespace chrono;

int main() {
    vector<long long> d1(30000000);
    vector<long long> d2(30000000);

    mt19937 gen;
    uniform_int_distribution<long long> dis(0, 100000000);
    auto rand_num([=]() mutable { return dis(gen); });

    generate(execution::par, begin(d1), end(d1), rand_num);
    d2 = d1;
    
    auto start_t = high_resolution_clock::now();
    sort(begin(d1), end(d1));
    auto end_t = high_resolution_clock::now();
    auto duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "The run time is: " << double(duration.count()) * nanoseconds::period::num / nanoseconds::period::den << "s" << endl;

    start_t = high_resolution_clock::now();
    sort(execution::par, begin(d2), end(d2));
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "The run time is: " << double(duration.count()) * nanoseconds::period::num / nanoseconds::period::den << "s" << endl;
  
    return 0;
}

我在windows的环境中找不到execution头文件,因此我先在linux(gcc 10.2.0)上运行了下该代码

┌──(kali㉿kali)-[~/testCpp]
└─$ g++ par.cpp -std=c++17                                                                                                                                                                             
┌──(kali㉿kali)-[~/testCpp]
└─$ ./a.out               
The run time is: 10.6875s
The run time is: 11.6801s

在这个代码的基础上,我想加上-D_GLIBCXX_PARALLEL -fopenmp看看有啥效果。

┌──(kali㉿kali)-[~/testCpp]
└─$ g++ par.cpp -std=c++17 -D_GLIBCXX_PARALLEL -fopenmp
                                                                                                                          
┌──(kali㉿kali)-[~/testCpp]
└─$ ./a.out                                            
The run time is: 2.51153s
The run time is: 2.63921s                     

结果两个排序的效果都得到了明显提高。

不过,可以看到两种sort的速度没啥区别,然后我把使用到execution的部分给注释掉了,只对d1进行排序,然后发现仅添加-D_GLIBCXX_PARALLEL -fopenmp参数,linux和windows(gcc 8.1.0)上都能跑,并且都能达到加速的效果。

为了验证并行化STL算法的正确性,我使用了算法库中的多种函数来进行测试,测试代码如下:

#include <algorithm>
//#include <execution>
#include <iostream>
#include <random>
#include <chrono>   
#include <vector>   
#include <numeric>     // iota
using namespace std;
using namespace chrono;

int main() {
    vector<long long> d1(300000000);
    iota(d1.rbegin(), d1.rend(), 0);

    auto start_t = high_resolution_clock::now();
    sort(begin(d1), end(d1));
    auto end_t = high_resolution_clock::now();
    auto duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Sort costs: " << double(duration.count()) / nanoseconds::period::den << "s" << endl;

    start_t = high_resolution_clock::now();
    auto res1 = binary_search(begin(d1), end(d1), 0x123456);
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Binary_search costs: " << double(duration.count()) << "ns, " << "result is " << res1 << endl;

    start_t = high_resolution_clock::now();
    auto res2 = lower_bound(begin(d1), end(d1), 0x123456);
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Lower_bound costs: " << double(duration.count()) << "ns, " << "result is " << *res2 << endl;

    start_t = high_resolution_clock::now();
    auto res3 = find(begin(d1), end(d1), 0x123456);
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Find costs: " << double(duration.count()) / nanoseconds::period::den << "s, " << "result is " << *res3 << endl;

    start_t = high_resolution_clock::now();
    auto res4 = count(begin(d1), end(d1), 0x123456);
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Count costs: " << double(duration.count()) / nanoseconds::period::den << "s, " << "result is " << res4 << endl;

    start_t = high_resolution_clock::now();
    nth_element(begin(d1), d1.begin() + 0xff, end(d1));
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Nth_element costs: " << double(duration.count()) / nanoseconds::period::den << "s, " << "nth_element is " << d1[0xff - 1] << endl;
    
    start_t = high_resolution_clock::now();
    auto res5 = max_element(begin(d1), end(d1));
    end_t = high_resolution_clock::now();
    duration = duration_cast<nanoseconds>(end_t - start_t);
    cout << "Max_element costs: " << double(duration.count()) / nanoseconds::period::den << "s, " << "result is " << *res5 << endl;
    return 0;
}

上述代码在linux和windows环境都能正常运行,命令行参数也相同。

下面是在windows平台(gcc 8.1.0, AMD4600U 6cores 12threads)进行测试的结果。

不加参数-D_GLIBCXX_PARALLEL -fopenmp输出如下:

PS D:\VSworkspace\a_code> cd "d:\VSworkspace\a_code\" ; if ($?) { g++ par_stl.cpp -o par_stl } ; if ($?) { .\par_stl }
Sort costs: 45.8743s
Binary_search costs: 0ns, result is 1
Lower_bound costs: 0ns, result is 1193046
Find costs: 0.0045747s, result is 1193046
Count costs: 2.125s, result is 1
Nth_element costs: 4.10857s, nth_element is 254
Max_element costs: 2.47174s, result is 299999999

加上之后输出如下:

PS D:\VSworkspace\a_code> g++ .\par_stl.cpp  -D_GLIBCXX_PARALLEL -fopenmp
PS D:\VSworkspace\a_code> .\a.exe
Sort costs: 8.54622s
Binary_search costs: 0ns, result is 1
Lower_bound costs: 0ns, result is 1193046
Find costs: 0.0030668s, result is 1193046
Count costs: 1.10674s, result is 1
Nth_element costs: 1.27597s, nth_element is 254
Max_element costs: 0.874685s, result is 299999999

可以发现以上的算法,执行效率都有几倍的提高,输出的结果都相同。

总结

目前execution头文件好像用处不大,也不用指定-std=c++17,仅添加参数-D_GLIBCXX_PARALLEL -fopenmp,即可达到并行化STL加速的效果,加速效果还挺不错的。

举报

相关推荐

0 条评论