0
点赞
收藏
分享

微信扫一扫

Python数据分析与展示 笔记二

精进的医生 2022-02-19 阅读 55

数据的CSV文件存取

保存文件:savetxt()方法保存文件
csv文件格式:

np.savetxt(frame,array,fmt='%.18e',delimiter=None)

eg:

In [1]: import numpy as np
In [2]: a = np.arange(100).reshape(5,20)
In [3]: np.savetxt('a.csv', a, fmt='%d', delimiter=',')

读取文件: loadtxt()方法读取文件
eg:

In [5]: b = np.loadtxt('a1.csv', delimiter=',')
In [6]: b

np.random的随机数函数

在这里插入图片描述
eg:

In [18]: a = np.random.rand(3,4,5)
In [19]: a
Out[19]: 
array([[[ 0.97845512,  0.90466706,  0.92576248,  0.77775142,  0.84334893],
        [ 0.39599821,  0.31917683,  0.7961439 ,  0.01324569,  0.97660396],
        [ 0.5049603 ,  0.80952265,  0.67359257,  0.89334316,  0.94496225],
        [ 0.04840473,  0.04665257,  0.20956817,  0.62255095,  0.36600489]],
 
       [[ 0.58059326,  0.28464266,  0.23596248,  0.16677631,  0.86467069],
        [ 0.14691968,  0.60863245,  0.71725038,  0.69206766,  0.18301705],
        [ 0.73197901,  0.99051723,  0.10489076,  0.33979432,  0.0354286 ],
        [ 0.73696453,  0.48268632,  0.99294233,  0.06285961,  0.93090147]],
 
       [[ 0.07853777,  0.827061  ,  0.66325364,  0.52289669,  0.96894828],
        [ 0.41912388,  0.01883408,  0.80978245,  0.93082898,  0.98095581],
        [ 0.58614214,  0.55996867,  0.37734444,  0.79280598,  0.03626233],
        [ 0.233132  ,  0.22514788,  0.32245147,  0.13739658,  0.18866422]]])

在这里插入图片描述
eg:

In [28]: a = np.random.randint(100,200,(3,4))
In [29]: a
Out[29]: 
array([[116, 111, 154, 188],
       [162, 133, 172, 178],
       [149, 151, 154, 177]])

NumPy统计函数

np.random的统计函数 :

      函数                                  说明
sum(a,axis = None)                  根据给定轴axis计算数值a相关元素之和,axis整数或元组
mean(a,sxis = None)                 根据给定轴axis计算数值a相关元素期望,axis整数或元组
average(a,axis = None,weight = None)根据给定轴axis计算数值a相关元素加权平均值
std(a,axis =None)                   根据给定轴axis计算数值a相关元素标准差
var(a,axis = None)                  跟据给定轴axis计算数值a相关元素方差

        函数                              说明
    min(a) max(a)               计算数组a中元素的最小值,最大值
    argmin(a)argmax(a)          计算数组a中元素的最小值,最大值的降一维后的下标
    unravel_index(index,shape)  转换多维下标
    ptp(a)                      计算数组a中元素的最小值,最大值的差
   median(a)                    计算数组a中元素的中位数

eg:

In [47]: a = np.arange(15).reshape(3,5)
In [48]: a
Out[48]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
 
In [49]: np.sum(a)
Out[49]: 105
In [50]: np.mean(a,axis=1)      # 2. = (0+5+10)/3
Out[50]: array([  2.,   7.,  12.])
举报

相关推荐

0 条评论