0
点赞
收藏
分享

微信扫一扫

助力企业信息化,开源免费工作流引擎AntFlow推出重榜功能tidb支持,为工作流引擎水平扩展提供无限可能

最近在研究SLAM目标检测相关知识,看到一篇论文,集成了SC-A-LOAM作为后端回环检测模块,在学习了论文相关内容后决定看一下代码知识,随后将其移植,学习过程中发现我找的论文已经集成了回环检测模块,但是我的另一篇base并没有集成回环检测模块,不过后面调研发现这个回环检测模块可以方便的进行移植,下面简单总结一下这个后端回环模块的使用方式:

  • 原始集成了A-LOAM的Github链接:SC-A-LOAM
  • 集成了FATS-LIO的Github链接:FAST-LIO-SLAM

下面的FAST-LIO是在A-LOAM的基础上发展的后端回环模块集成到FAST算法上,首先参考SC-A-LOAM官网介绍:
在这里插入图片描述

FAST-LIO-SLAM目录结构:
在这里插入图片描述
我们需要需要做两步,1.将FAST-LIO更改为自己的前端SLAM系统;2. 更改上图中SC-PGO模块中的里程计以及帧订阅话题。第一步需要结合自己选择的算法进行更改。第二部主要修改下述文件:
在这里插入图片描述
在这里插入图片描述

  • 修改lidar_type中的value为自己的雷达类型,如我的代码中的是:VLP16。这一步需要调研SC-PGO是否支持你的雷达类型。
  • 修改下面方框中的 /Odometry_after_opt/loop_map为自己的里程计系统发布的里程计以及雷达帧话题,如果没有的话需要修改代码实现发布这两个话题。
  • **关于为什么FAST-LIO-SLAM集成的SC-PGO系统有三个话题映射:**上图最后一个方框下面一行的/cloud_for_scancontext的重映射,在FAST-LIO-SLAM代码中全局搜索/cloud_for_scancontext发现只有launch文件中这一处使用到的,其他地方没有,所以我考虑这个话题重映射是没有实际意义的,同时我选择的代码中也没有映射这个话题,可以考虑这个话题的影响。

按照上面步骤完成后就实现将回环检测模块集成到自己的SLAM系统中。

举报

相关推荐

0 条评论