0
点赞
收藏
分享

微信扫一扫

HTML——基本标签

河南妞 2024-09-19 阅读 35

363. Max Sum of Rectangle No Larger Than K

Given an m x n matrix matrix and an integer k, return the max sum of a rectangle in the matrix such that its sum is no larger than k.

It is guaranteed that there will be a rectangle with a sum no larger than k.
 

Example 1:

在这里插入图片描述

Example 2:
Constraints:
  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -100 <= matrix[i][j] <= 100
  • − 1 0 5 < = k < = 1 0 5 -10^5 <= k <= 10^5 105<=k<=105

From: LeetCode
Link: 363. Max Sum of Rectangle No Larger Than K


Solution:

Ideas:
  • Outer loops: We loop over all pairs of starting and ending rows.
  • Column sum array: We calculate the cumulative sums for columns between the two rows, effectively reducing the 2D matrix to a 1D array problem.
  • Brute-force subarray sum check: We calculate all possible sums of subarrays in the 1D colSums array and track the largest one that is no larger than k.
Code:
int maxSumSubmatrix(int** matrix, int matrixSize, int* matrixColSize, int k) {
    int maxSum = INT_MIN;
    int rows = matrixSize, cols = *matrixColSize;

    // Loop through the possible row start points
    for (int startRow = 0; startRow < rows; ++startRow) {
        // Temporary array to store column sums
        int* colSums = (int*)calloc(cols, sizeof(int));
        
        // Loop through the possible row end points
        for (int endRow = startRow; endRow < rows; ++endRow) {
            // Update column sums
            for (int col = 0; col < cols; ++col) {
                colSums[col] += matrix[endRow][col];
            }

            // Now we need to find the subarray no larger than k in the colSums array
            // Brute-force approach for subarray sums
            for (int startCol = 0; startCol < cols; ++startCol) {
                int currentSum = 0;
                for (int endCol = startCol; endCol < cols; ++endCol) {
                    currentSum += colSums[endCol];
                    if (currentSum <= k) {
                        if (currentSum > maxSum) {
                            maxSum = currentSum;
                        }
                    }
                }
            }
        }
        free(colSums);
    }

    return maxSum;
}
举报

相关推荐

0 条评论