0
点赞
收藏
分享

微信扫一扫

服务器CPU架构有几种?分别应用到什么场景?有啥优缺点?

BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

目录

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

BO-RBF多变量时间序列 | Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测

程序平台:要求Matlab2023版以上

功能:
1、多变量特征输入,单序列变量输出。
2、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:
风速预测、光伏功率预测、发电功率预测、碳价预测,交通流预测,等多种预测类应用。

使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab 基于贝叶斯优化算法优化径向基函数神经网络(BO-RBF)的多变量时间序列预测


%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);




参考资料

举报

相关推荐

0 条评论