目录
- 需求
- 数据
- 思路
- 码代码
- bean
- map
- 分组比较器(辅助排序)
- 分区
- reduce
- 测试job任务
- 查看结果
需求
数据
0000001 Pdt_01 222.8
0000002 Pdt_06 722.4
0000001 Pdt_05 25.8
0000003 Pdt_01 222.8
0000003 Pdt_01 33.8
0000002 Pdt_03 522.8
0000002 Pdt_04 122.4
订单号 x 价格
希望的到的数据: 根据订单号得到分区,每个分区清洗出最大的价格
分区1
0000001 222.8
分区2
0000002 722.4
分区3
0000003 222.8
思路
- 这个每行数据可以定义一个orderbean,实现序列化接口,自定义比较器,先根据id排序,然后根据价格倒序,重写写tostring方法(这里定义输出格式)
- map的key就是一个orderben,value可以为空
- 分组; 根据orderbean的id进行分组,因为上面一步价格倒序了,所以分组得到的第一条数据都是最大的价格,满足要求
- 分区,根据订单号id进行分区
- reduce合并,输出key orderbean,value可以为空
- 自定义main函数,将map, 分组比较器,分区,reduce等写在job中,执行job任务,指定到文件夹输出即可
码代码
bean
@Setter
@Getter
public class OrderBean implements WritableComparable<OrderBean> {
private int id;
private double price;
@Override
public int compareTo(OrderBean o) {
if (this.id > o.id) {
return 1;
} else if (this.id < o.id) {
return -1;
} else {
return this.price - o.price > 0 ? -1 : 1;
}
}
@Override
public void write(DataOutput output) throws IOException {
output.writeInt(this.id);
output.writeDouble(this.price);
}
@Override
public void readFields(DataInput input) throws IOException {
this.id = input.readInt();
this.price = input.readDouble();
}
@Override
public String toString() {
return this.id + "\t" + this.price;
}
}
map
//0000002 Pdt_04 122.4
//mapreduce根据key进行排序,所以k2,v2的类型应该为 FlowBean, NullWritable
public class OrderMap extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
OrderBean bean = new OrderBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String s = value.toString();
String[] split = s.split("\t");
bean.setId(Integer.parseInt(split[0]));
bean.setPrice(Double.parseDouble(split[2]));
context.write(bean, NullWritable.get());
}
}
分组比较器(辅助排序)
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class GroupComparator extends WritableComparator {
public GroupComparator() {
//按照自定义的orderbean排序,第二个参数是辅助排序
super(OrderBean.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean oa = (OrderBean)a;
OrderBean ob = (OrderBean)b;
if(oa.getId() > ob.getId()){
return 1;
}else if(oa.getId() < ob.getId()){
return -1;
}else{
return 0;
}
}
}
分区
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;
public class OrderPartition extends Partitioner<OrderBean, NullWritable> {
@Override
public int getPartition(OrderBean orderBean, NullWritable nullWritable, int i) {
return (orderBean.getId() & Integer.MAX_VALUE) % 3;
}
}
reduce
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class OrderReduce extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
@Override
protected void reduce(OrderBean bean, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(bean, NullWritable.get());
}
}
测试job任务
public class MainOrder {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
args = new String[]{"F:\\input\\GroupingComparator.txt", "F:\\output\\GroupingComparator4"};
//获取配置文件
Configuration conf = new Configuration();
//创建job任务
Job job = Job.getInstance(conf);
// 加载jar包
job.setJarByClass(MainOrder.class);
//指定Map类和map的输出类型 Text, NullWritable
//关联map和reduce
job.setMapperClass(OrderMap.class);
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(NullWritable.class);
// 设置最终输出类型
job.setReducerClass(OrderReduce.class);
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(NullWritable.class);
//指定辅助排序
job.setGroupingComparatorClass(GroupComparator.class);
//设置分区
job.setPartitionerClass(OrderPartition.class);
job.setNumReduceTasks(3);
//指定数据输入的路径和输出的路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
查看结果
完美!!大功告成!!