1086. Tree Traversals Again (25)
时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
#include<cstdio>
#include<iostream>
#include<string>
#include<stack>
using namespace std;
struct node
{
int data;
node*lchild, *rchild;
node():lchild(NULL),rchild(NULL){}
}*root;
bool flag = false;
void postOrder(node*root)
{
if (!root)
{
return;
}
postOrder(root->lchild);
postOrder(root->rchild);
if (!flag)
{
printf("%d", root->data);
flag = true;
}
else
printf(" %d", root->data);
}
int main()
{
int N;
scanf("%d", &N);
int i = 0;
string s; int t;
stack<node*> st;
bool tag = false;
node *ROOT;
while (i < N)
{
cin >> s;
if (s == "Push")
{
cin >> t;
node* newNode = new node;
newNode->data = t;
if (!tag)
{
if (!root)
{
root = newNode;
ROOT = root;
}
else
{
root->lchild = newNode;
root = root->lchild;
}
}
else
{
root->rchild = newNode;
root = root->rchild;
tag = false;
}
st.push(newNode);
i++;
}
else
{
tag = true;
root = st.top();
st.pop();
}
}
postOrder(ROOT);
return 0;
}