0
点赞
收藏
分享

微信扫一扫

一文读懂标量、向量、矩阵、张量的关系

文章目录


参考文章: 跳转

一、标量

标量只有大小概念,没有方向的概念。通过一个具体的数值就能表达完整。

比如:重量、温度、长度、提及、时间、热量等都数据标量。
在这里插入图片描述

二、向量

向量主要有2个维度:大小、方向。

大小:箭头的长度表示大小

方向:箭头所指的方向表示方向
在这里插入图片描述

向量的四种表示方法

代数表示

一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如 a ⃗ \vec{a} a b ⃗ \vec{b} b c ⃗ \vec{c} c

几何表示

向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。
在这里插入图片描述

坐标表示

在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点 P 的坐标。向量a称为点P的位置向量。

在这里插入图片描述
当然,对于多维的空间向量,可以通过类推得到。

矩阵表示


a = [ x y ] a = \begin{bmatrix} x \\ y \end{bmatrix} a=[xy]

b = [ x y z ] b = \begin{bmatrix} x \\ y \\ z \end{bmatrix} b= xyz

三、矩阵

矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
A = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n a 31 a 32 . . . a 3 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ] A = \begin{bmatrix} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ a_{31}&a_{32}&...&a_{3n}\\ ...&...&...&...\\ a_{m1}&a_{m2}&...&a_{mn} \end{bmatrix} A= a11a21a31...am1a12a22a32...am2...............a1na2na3n...amn

四、张量

张量有很多种定义的方式,这里只讨论人工智能领域里的概念。

在人工智能领域,定义比较简单,TensorFlow是这么定义的:A tensor is a generalization of vectors and matrices to potentially higher dimensions.
简单翻译过来就是:张量是多维数组,目的是把向量、矩阵推向更高的维度。

五、标量、向量、矩阵、张量的关系

这4个概念是维度不断上升的,我们用点线面体的概念来比喻解释会更加容易理解:

  • 点——标量(scalar)
  • 线——向量(vector)
  • 面——矩阵(matrix)
  • 体——张量(tensor)

在这里插入图片描述

举报

相关推荐

0 条评论