最近在学习卷积神经网络,根据之前博主的卷积神经网络的代码,做了一些备注,对于代码不太熟悉的可以作为参考。数据集是MNIST。
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
"""
transforms.ToTensor()----把灰度范围从0-255转换到0-1
transforms.Normalize()---用均值和标准差归一化,归一化张量图像,将0-1转换到(-1,1)
"""
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # -1 此处自动算出的是320
x = self.fc(x)
return x
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
# lr---学习旅,momentum---动量因子,optimizer---构建一个优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
# running_loss记录在这次epoch中每个batch的损失和
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
# 梯度初始化为零,把loss关于weight的导数变为0
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
# 反向传播求梯度
loss.backward()
# 更新所有参数
optimizer.step()
# 为了计算这次epoch的loss平均值
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
# 被with torch.no_grad()包围的代码,不用跟踪反向梯度计算
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
# 输出最大值所在索引,就是最大的那个数字是第几个,从0开始
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()