1 简介
近年来,已有越来越多的建模方法被相关学者提出用来解决分类识别、风险预测、效能评估等问题,这些建模方法包括:时间序列分析、灰色理论、神经网络等。但是时间序列分析,方法复杂且预测精度较低;灰色理论需要规律性的数据;神经网络方法易出现过拟合以及易陷入局部极值等问题。支持向量机((Support Vector Machine,SVM)是一种基于结构风险最小化且有着强大的泛化能力的建模方法。它可以很好地解决小样本、非线性,以及陷入局部极值等问题。然而,SVM的学习能力和泛化能力取决于合适的参数选择,这些参数直接影响了模型的性能。因此,近年来越来越多的参数优化方法被应用于 SVM的参数选择问题,比如网格搜索法、粒子群算法、蝙蝠算法等,然而网格搜索法运算量大,搜索效率低;粒子群算法和蝙蝠算法在参数寻优过程中会出现收敛速度慢、易陷入局部极值的问题。本文提出的 GWO—SVM模型,仿真结果表明,该模型预测精度较高。
2 部分代码
clc clear all close all n=30; % Population size, typically 10 to 25 p=0.8; % probabibility switch % Iteration parameters N_iter=3000; % Total number of iterations fitnessMSE = ones(1,N_iter); % % Dimension of the search variables Example 1 d=2; Lb = -1*ones(1,d); Ub = 1*ones(1,d); % % Dimension of the search variables Example 2 % d=3; % Lb = [-2 -1 -1]; % Ub = [2 1 1]; % % % Dimension of the search variables Example 3 % d=3; % Lb = [-1 -1 -1]; % Ub = [1 1 1]; % % % % % Dimension of the search variables Example 4 % d=9; % Lb = -1.5*ones(1,d); % Ub = 1.5*ones(1,d); % Initialize the population/solutions for i=1:n, Sol(i,:)=Lb+(Ub-Lb).*rand(1,d); % To simulate the filters use fitnessX() functions in the next line Fitness(i)=fitness(Sol(i,:)); end % Find the current best [fmin,I]=min(Fitness); best=Sol(I,:); S=Sol; % Start the iterations -- Flower Algorithm for t=1:N_iter, % Loop over all bats/solutions for i=1:n, % Pollens are carried by insects and thus can move in % large scale, large distance. % This L should replace by Levy flights % Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest) if rand>p, %% L=rand; L=Levy(d); dS=L.*(Sol(i,:)-best); S(i,:)=Sol(i,:)+dS; % Check if the simple limits/bounds are OK S(i,:)=simplebounds(S(i,:),Lb,Ub); % If not, then local pollenation of neighbor flowers else epsilon=rand; % Find random flowers in the neighbourhood JK=randperm(n); % As they are random, the first two entries also random % If the flower are the same or similar species, then % they can be pollenated, otherwise, no action. % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t) S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:)); % Check if the simple limits/bounds are OK S(i,:)=simplebounds(S(i,:),Lb,Ub); end % Evaluate new solutions % To simulate the filters use fitnessX() functions in the next % line Fnew=fitness(S(i,:)); % If fitness improves (better solutions found), update then if (Fnew<=Fitness(i)), Sol(i,:)=S(i,:); Fitness(i)=Fnew; end % Update the current global best if Fnew<=fmin, best=S(i,:) ; fmin=Fnew ; end end % Display results every 100 iterations if round(t/100)==t/100, best fmin end fitnessMSE(t) = fmin; end %figure, plot(1:N_iter,fitnessMSE); % Output/display disp(['Total number of evaluations: ',num2str(N_iter*n)]); disp(['Best solution=',num2str(best),' fmin=',num2str(fmin)]); figure(1) plot( fitnessMSE) xlabel('Iteration'); ylabel('Best score obtained so far');
3 仿真结果
4 参考文献
[1]王玉鑫, 李东生, & 高杨. (2018). 基于改进型花朵授粉算法的svm参数优化. 火力与指挥控制, 43(10), 6.
部分理论引用网络文献,若有侵权联系博主删除。