文章目录
前言
- 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。
- 这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。
一、单例模式实现
1.饿汉式
静态变量方式
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 饿汉式静态变量
* @Date: 2023/12/20 21:56
*/
public class Singleton {
private Singleton(){}
private static Singleton instance = new Singleton();
public static Singleton getInstance() {
return instance;
}
}
测试:
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Client
* @Description: 测试类
* @Date: 2023/12/20 21:57
*/
public class Client {
public static void main(String[] args) {
Singleton instance = Singleton.getInstance();
Singleton instance1 = Singleton.getInstance();
System.out.println(instance == instance1);//true
}
}
静态代码块方式
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 饿汉式(静态代码块)
* @Date: 2023/12/21 9:16
*/
public class Singleton {
private Singleton(){}
private static Singleton instance;
static {
instance = new Singleton();
}
public static Singleton getInstance(){
return instance;
}
}
测试:
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Client
* @Description: 测试类
* @Date: 2023/12/20 21:57
*/
public class Client {
public static void main(String[] args) {
Singleton instance = Singleton.getInstance();
Singleton instance1 = Singleton.getInstance();
System.out.println(instance == instance1);//true
}
}
2.懒汉式
线程不安全
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 懒汉式(线程不安全)
* @Date: 2023/12/21 9:24
*/
public class Singleton {
//私有构造方法
private Singleton() {}
//在成员位置创建该类的对象
private static Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
线程安全
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 懒汉式(线程安全)
* @Date: 2023/12/21 9:32
*/
public class Singleton {
//私有构造方法
private Singleton() {}
//在成员位置创建该类的对象
private static Singleton instance;
//对外提供静态方法获取该对象
public static synchronized Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
双重检查锁
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 懒汉式(双重检查锁)
* @Date: 2023/12/21 9:36
*/
public class Singleton {
//私有构造方法
private Singleton() {}
private static Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例
if(instance == null) {
synchronized (Singleton.class) {
//抢到锁之后再次判断是否为null
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 懒汉式(双重检查锁)
* @Date: 2023/12/21 9:36
*/
public class Singleton {
//私有构造方法
private Singleton() {}
private static volatile Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例
if(instance == null) {
synchronized (Singleton.class) {
//抢到锁之后再次判断是否为null
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
静态内部类方式
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 懒汉式(静态内部类)
* @Date: 2023/12/21 9:42
*/
public class Singleton {
//私有构造方法
private Singleton() {}
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
//对外提供静态方法获取该对象
public static Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
}
枚举方式
/**
* @Version: 1.0.0
* @Author: Dragon_王
* @ClassName: Singleton
* @Description: 恶汉式(枚举)
* @Date: 2023/12/21 9:53
*/
public enum Singleton {
INSTANCE;
}
二、存在问题
1.序列化反序列化
public class Singleton implements Serializable {
//私有构造方法
private Singleton() {}
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
//对外提供静态方法获取该对象
public static Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
}
public class Test {
public static void main(String[] args) throws Exception {
//往文件中写对象 (先运行这个写入,然后注释)
//writeObject2File();
//从文件中读取对象(再运行这个读取)
Singleton s1 = readObjectFromFile();
Singleton s2 = readObjectFromFile();
//判断两个反序列化后的对象是否是同一个对象
System.out.println(s1 == s2);
}
private static Singleton readObjectFromFile() throws Exception {
//创建对象输入流对象
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("C:\\Users\\Dragon\\Desktop\\a.txt"));
//第一个读取Singleton对象
Singleton instance = (Singleton) ois.readObject();
return instance;
}
public static void writeObject2File() throws Exception {
//获取Singleton类的对象
Singleton instance = Singleton.getInstance();
//创建对象输出流
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("C:\\Users\\Dragon\\Desktop\\a.txt"));
//将instance对象写出到文件中
oos.writeObject(instance);
}
}
2.反射破坏
public class Singleton {
//私有构造方法
private Singleton() {}
private static volatile Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
if(instance != null) {
return instance;
}
synchronized (Singleton.class) {
if(instance != null) {
return instance;
}
instance = new Singleton();
return instance;
}
}
}
public class Test {
public static void main(String[] args) throws Exception {
//获取Singleton类的字节码对象
Class clazz = Singleton.class;
//获取Singleton类的私有无参构造方法对象
Constructor constructor = clazz.getDeclaredConstructor();
//取消访问检查
constructor.setAccessible(true);
//创建Singleton类的对象s1
Singleton s1 = (Singleton) constructor.newInstance();
//创建Singleton类的对象s2
Singleton s2 = (Singleton) constructor.newInstance();
//判断通过反射创建的两个Singleton对象是否是同一个对象
System.out.println(s1 == s2);
}
}
3.解决
序列化破坏解决
public class Singleton implements Serializable {
//私有构造方法
private Singleton() {}
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
//对外提供静态方法获取该对象
public static Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
/**
* 下面是为了解决序列化反序列化破解单例模式
*/
private Object readResolve() {
return SingletonHolder.INSTANCE;
}
}
private Object readOrdinaryObject(boolean unshared) throws IOException {
...
//isInstantiable 返回true,执行 desc.newInstance(),通过反射创建新的单例类,
obj = desc.isInstantiable() ? desc.newInstance() : null;
...
// 在Singleton类中添加 readResolve 方法后 desc.hasReadResolveMethod() 方法执行结果为true
if (obj != null && handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()) {
// 通过反射调用 Singleton 类中的 readResolve 方法,将返回值赋值给rep变量
// 这样多次调用ObjectInputStream类中的readObject方法,继而就会调用我们定义的readResolve方法,所以返回的是同一个对象。
Object rep = desc.invokeReadResolve(obj);
...
}
return obj;
}
反射破坏解决
public class Singleton {
//私有构造方法
private Singleton() {
/*
反射破解单例模式需要添加的代码
*/
if(instance != null) {
throw new RuntimeException();
}
}
private static volatile Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
if(instance != null) {
return instance;
}
synchronized (Singleton.class) {
if(instance != null) {
return instance;
}
instance = new Singleton();
return instance;
}
}
}
三、JDK源码解析
通过源码查看使用的单例模式:可以看出Runtime类使用的是饿汉式(静态属性)方式来实现单例模式的。
public class Runtime {
private static Runtime currentRuntime = new Runtime();
/**
* Returns the runtime object associated with the current Java application.
* Most of the methods of class <code>Runtime</code> are instance
* methods and must be invoked with respect to the current runtime object.
*
* @return the <code>Runtime</code> object associated with the current
* Java application.
*/
public static Runtime getRuntime() {
return currentRuntime;
}
/** Don't let anyone else instantiate this class */
private Runtime() {}
...
}
使用Runtime类中的方法(主要理解单例模式怎么调用方法):
public class RuntimeDemo {
public static void main(String[] args) throws IOException {
//获取Runtime类对象
Runtime runtime = Runtime.getRuntime();
//返回 Java 虚拟机中的内存总量。
System.out.println(runtime.totalMemory());
//返回 Java 虚拟机试图使用的最大内存量。
System.out.println(runtime.maxMemory());
//创建一个新的进程执行指定的字符串命令,返回进程对象
Process process = runtime.exec("ipconfig");
//获取命令执行后的结果,通过输入流获取
InputStream inputStream = process.getInputStream();
byte[] arr = new byte[1024 * 1024* 100];
int b = inputStream.read(arr);
System.out.println(new String(arr,0,b,"gbk"));
}
}
总结
以上就是软件设计模式的单例模式的讲解。