0
点赞
收藏
分享

微信扫一扫

复化梯形公式、复化Simpon公式、Romberg算法(python)

Brose 2022-08-16 阅读 54


目录

​​1、代码​​

​​2、结果​​

1、代码

author:hewang
qq:207962168


import numpy as np
PI25DT=3.141592653589793238462643

def funEval(x):
fx = 4.0/(1+x**2)
return fx

def fhtan(x0,f):
a=x0[0]
b=x0[-1]
fx = f(x0)
y=2*np.sum(fx)-fx[0]-fx[-1]
tn=((b-a)/(fx.shape[0]-1))*y/2
return tn

def fhsimpson(x0,f):
a=x0[0]
b=x0[-1]
fx = f(x0)
f1=fx[1::2].copy()

f2=fx[0::2].copy()


if fx.shape[0] % 2== 1:
y=4*np.sum(f1)+2*np.sum(f2)-fx[0]-fx[-1]
else:
y=4*np.sum(f1)+2*np.sum(f2)-fx[0]-2*fx[-1]
sn=2*((b-a)/(fx.shape[0]-1))*y/6

return sn

def romberg(x0,f):
k=0
n = x0.shape[0]
fx = f(x0)
xlb=np.zeros((4,n+3))
for i in range(n+3):
xlb[0,i]=fhtan(x0,f)
for i in range(n+2):
xlb[1,i+1]=4*xlb[0,i+1]/3-xlb[0,i]/3
for i in range(n+1):
xlb[2,i+2]=16*xlb[1,i+2]/15-xlb[1,i+1]/15
while k<n:
xlb[3,k+3]=64*xlb[2,k+3]/63-xlb[2,k+2]/63
k+=1
k=np.arange(n+3)
xl=np.vstack([k,xlb])
# print(xl.T)
# print(xlb[3][3:])
return xlb[3][3:]


x=np.array([0,1])
x0=np.linspace(x[0],x[1],2**10+1)

print(fhtan(x0,funEval))

print(fhsimpson(x0,funEval))

print(romberg(x0,funEval))


2、结果

3.141592494644074
3.141592653589793
[3.14159249 3.14159249 3.14159249 ... 3.14159249 3.14159249 3.14159249]

Process finished with exit code 0

举报

相关推荐

0 条评论