#include<bits/stdc++.h>
using namespace std;
#define rep(i,l,r) for(int i=(l);i<=(r);i++)
#define per(i,l,r) for(int i=(l);i>=(r);i--)
#define ll long long
#define mset(s,t) memset(s,t,sizeof(t))
#define mcpy(s,t) memcpy(s,t,sizeof(t))
#define fi first
#define se second
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define mp make_pair
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<ll> Vll;
typedef vector<pair<int, int> > vpii;
typedef vector<pair<ll, ll> > vpll;
const ll mod = 1e9 + 7;
//const ll mod = 998244353;
const double pi = acos(-1.0);
inline ll qmi (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a%mod;
a = a * a %mod;
b >>= 1;
}
return ans;
}
inline int read () {
int x = 0, f = 0;
char ch = getchar();
while (!isdigit(ch)) f |= (ch=='-'),ch= getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
return f?-x:x;
}
template<typename T> void print(T x) {
if (x < 0) putchar('-'), x = -x;
if (x >= 10) print(x/10);
putchar(x % 10 + '0');
}
inline ll sub (ll a, ll b) {
return ((a - b ) %mod + mod) %mod;
}
inline ll add (ll a, ll b) {
return (a + b) %mod;
}
inline ll inv (ll a) {
return qmi(a, mod - 2);
}
const int N = 1e5 + 10;
struct Node {
int k;
int cur;
char c;
int st () {
return (k - 1) / cur + 1;
}
}t[N];
int n, m;
string s;
bool operator< (const Node&a, const Node&b) {
return ((a.k - 1) / a.cur + 1) < ((b.k - 1) / b.cur + 1);
}
void solve() {
cin >> s;
cin >> n;
int cnt[26] = {0};
for (auto t : s)
cnt[t - 'a'] ++;
string ans = "";
priority_queue<Node> heap;
for (int i = 0; i < 26; i ++)
if (cnt[i])
{
heap.push({cnt[i], 1, i + 'a'});
ans += (i + 'a');
}
if (n < heap.size()) {
puts("-1");
return;
}
n -= heap.size();
while (n) {
auto t = heap.top(); heap.pop();
t.cur ++;
ans += t.c;
heap.push(t);
n --;
}
auto t = heap.top();
cout << t.st() << endl;
cout << ans << endl;
}
int main () {
// ios::sync_with_stdio(0),cin.tie(0), cout.tie(0);
int t;
t =1;
//cin >> t;
while (t --) solve();
return 0;
}
题意:问至少拿多少个次以及构造一个可能拿的字符构成的字符串
题解:首先每个字母拿一次,然后还剩(k - 1) / a + 1因为已经拿了一次,所以加1,然后再判断是否合法,接着判断还需要拿多少个。按照紧急程排序