0
点赞
收藏
分享

微信扫一扫

K-means算法通俗原理及Python与R语言的分别实现


K均值聚类方法是一种划分聚类方法,它是将数据分成互不相交的K类。K均值法先指定聚类数,目标是使每个数据到数据点所属聚类中心的总距离变异平方和最小,规定聚类中心时则是以该类数据点的平均值作为聚类中心。

 

01K均值法原理与步骤

对于有N个数据的数据集,我们想把它们聚成K类,开始需要指定K个聚类中心,假设第i类有ni个样本数据,计算每个数据点分别到聚类中心的距离平方和,距离这里直接用的欧式距离,还有什么海明距离、街道距离、余弦相似度什么的其实都可以,这里聚类的话,欧式距离就好。

(1)、所有类别样本数等于总样本数,即每个类类是互不相同的

K-means算法通俗原理及Python与R语言的分别实现_聚类

(2)、每一类(假设是第i类)中数据点到聚类中心距离平方总和di为:

xi表示第i类各点平均值(聚类中心)

K-means算法通俗原理及Python与R语言的分别实现_算法_02

(3)、K类数据点距离之和为:


这样就会有一个KN的距离平方和矩阵,每一列(比如第j列)的最小值对应的行数(比如第i行)就表明:第j个数据样本属于第i类别。这样,每个数据就会分别属于不同的类别了。

K-means算法通俗原理及Python与R语言的分别实现_数据_03

比如,表格中红色部分数据点x2到第一类的聚类中心距离最小,则x2就属于第一类。

K均值步骤:

  1. 随机选取K个数据点作为(起始)聚类中心;
  2. 按照距离最近原则分配数据点到对应类;
  3. 计算每类的数据点平均值(新的聚类中心);
  4. 计算数据点到聚类中心总距离;
  5. 如果与上一次相比总距离下降,聚类中心替换;
  6. 直到总距离不再下降或者达到指定计算次数。

其实,这个过程相对比较简单,给我一组聚类中心,总能根据到聚类中心距离最小原则生成一组聚类方案,然后计算各个类别到聚类中心距离总和是否下降,如果距离总和下降,就继续计算每类数据点平均值(新的聚类中心),对应的聚类方案要好(还是那句话:给我一组聚类中心,总能根据到聚类中心距离最小原则生成一组聚类方案),然后不断计算,直到距离总和下降幅度很小(几乎收敛),或者达到指定计算次数。

K-means算法缺点主要是:

  1. 对异常值敏感;
  2. 需要提前确定k值;
  3. 结果不稳定;

02 K均值算法Python的实现

思路:

  1. 首先用random模块产生随机聚类中心;
  2. 用numpy包简化运算;
  3. 写了一个函数实现一个中心对应一种聚类方案;
  4. 不断迭代;
  5. matplotlib包结果可视化。

代码如下:





import numpy as np

 

import random as rd

 

import matplotlib.pyplot as plt

 

import math

 
#数据
 

dat = np.array([[14,22,15,20,30,18,32,13,23,20,21,22,23,24,35,18],

 

                [15,28,18,30,35,20,30,15,25,23,24,25,26,27,30,16]])

 

print(dat)

 
#聚类中心#
 

n = len(dat[0])

 

N = len(dat)n

 

k = 3

 
#-------随机产生-----#
 

center = rd.sample(range(n),k)

 

center = np.array([dat.T[i] for i in center])

 

print(‘初始聚类中心为:’)

 

print(center)

 

print(‘-----------------------’)

 
 
 
#计算聚类中心
 

def cent(x):

 

   return(sum(x)/len(x))

 
 
 
#计算各点到聚类中心的距离之和
 

def dist(x):

 

   #聚类中心

 

   m0 = cent(x)

 

   dis = sum(sum((x-m0)2))

 

   return(dis)

 
 
 
#距离
 

def f(center):

 

   c0 = []

 

   c1 = []

 

   c2 = []

 

   D = np.arange(k*n).reshape(k,n)

 

   d0 = center[0]-dat.T

 

   d1 = center[1]-dat.T

 

   d2 = center[2]-dat.T

 

   d = np.array([d0,d1,d2])

 

   for i in range(k):

 

      D[i] = sum((d[i]2).T)

 

   for i in range(n):

 

      ind = D.T[i].argmin()

 

      if(ind  0):

 

         c0.append(i)#分配类别

 

      else:

 

         if(ind  1):

 

            c1.append(i)

 

         else:

 

            c2.append(i)

 

   C0 = np.array([dat.T[i] for i in c0])

 

   C1 = np.array([dat.T[i] for i in c1])

 

   C2 = np.array([dat.T[i] for i in c2])

 

   C = [C0,C1,C2]

 

   print([c0,c1,c2])

 

   s = 0

 

   for i in C:

 

      s+=dist(i)

 

   return(s,C)

 
 
 

n_max = 50

 
#初始距离和
 

print(‘第1次计算!’)

 

dd,C = f(center)

 

print(‘距离和为’+str(dd))

 

print(‘第2次计算!’)

 

center = [cent(i) for i in C]

 

Dd,C = f(center)

 

print(‘距离和为’+str(Dd))

 

K = 3

 
 
 

while(K<n_max):

 

   #两次差值很小并且计算了一定次数

 

   if(math.sqrt(dd-Dd)<1 and K>20):

 

      break;

 

   print(‘第’+str(K)+‘次计算!’)

 

   dd = Dd

 

   print(‘距离和为’+str(dd))

 

   #当前聚类中心

 

   center = [cent(i) for i in C]

 

   Dd,C = f(center)

 

   K+=1

 
 
 
 
 
#—聚类结果可视化部分—#
 
 
 

j = 0

 

for i in C:

 

   if(j  0):

 

      plt.plot(i.T[0],i.T[1],‘ro’)

 

   if(j  1):

 

      plt.plot(i.T[0],i.T[1],‘b+’)

 

   if(j == 2):

 

      plt.plot(i.T[0],i.T[1],‘g*’)

 

   j+=1

 
 
 

plt.show()


 

(1):聚类成功的例子:

对于不合适的初始随机聚类中心,一般而言不会失败,成功次数较多。

K-means算法通俗原理及Python与R语言的分别实现_算法_04

可以看出,其实第五次就收敛了,共分成了三类。它们的标签序号为:

第一类:[1, 3, 8, 9, 10, 11, 12, 13];

第二类:[4, 6, 14];

第三类:[0, 2, 5, 7, 15]

聚类图:

K-means算法通俗原理及Python与R语言的分别实现_数据_05

聚类结果与实际情况一致

(2):聚类失败的例子:

有时候可能会失败,运行实验了三次出现了一次败笔,迭代过程如下:

K-means算法通俗原理及Python与R语言的分别实现_聚类_06

散点图:

K-means算法通俗原理及Python与R语言的分别实现_kmeans_07

聚类失败图

显然,由于初始点的随机选取不当,导致聚类严重失真!这聚类效果明显就很差,表明随机产生的初始聚类中心应该不合适,最后不管怎么迭代,都不可能生成合适的聚类了,这与k-means算法的原理确实可以解释的。这就是k-means的最显著的缺点!

03K均值算法的R语言实现

用的还是上面程序一样的数据,R语言聚类就很方便,直接调用kmeans(data,聚类数)就能方便完成:



rm(list = ls())
path <- ‘C:\Users\26015\Desktop\clu.txt’
dat <- read.csv(path,header = FALSE)
dat <- t(dat)
kc <- kmeans(dat,3)
summary(kc)
kc


查看聚类结果:

K-means clustering with 3 clusters of sizes 8, 3, 5
 
Cluster means:
      [,1]     [,2]
1 21.87500 26.00000
2 32.33333 31.66667
3 15.60000 16.80000


聚成3类,分别有8,3,5个数据

Clustering vector:

V1  V2  V3  V4  V5  V6  V7  V8  V9

3   1   3  1   2   3   2   3  1

V10 V11 V12 V13 V14 V15 V16

1   1   1   1   1   2   3

第一类:2,4,9,10,11,12,13,14

第二类:1,3,6,8,16;

第三类:5,7,15

由于Python下标是从“0”开始,所以两种方法聚类结果实际上是一样


举报

相关推荐

0 条评论