0
点赞
收藏
分享

微信扫一扫

BZOJ1012 [JSOI2008]最大数 线段树

niboac 2022-05-27 阅读 24

题目描述

现在请求你维护一个数列,要求提供以下两种操作:

1、 查询操作。

语法:​​Q L​

功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。

限制:BZOJ1012 [JSOI2008]最大数 线段树_输入输出

2、 插入操作。

语法:​​A n​

功能:将BZOJ1012 [JSOI2008]最大数 线段树_#include_02

限制:BZOJ1012 [JSOI2008]最大数 线段树_#include_03

注意:初始时数列是空的,没有一个数。

输入输出格式

输入格式:

第一行两个整数,BZOJ1012 [JSOI2008]最大数 线段树_#define_04

接下来的BZOJ1012 [JSOI2008]最大数 线段树_#define_05

输出格式:

对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。

输入输出样例

输入样例#1:

复制

5 100
A 96
Q 1
A 97
Q 1
Q 2

输出样例#1: 复制

96
93
96

说明

[JSOI2008]

本题数据已加强

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 98765431;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair pii;

inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}


ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/

ll MOD, m;
struct node {
int l, r;
ll MAX;
}t[maxn<<2];

void pushup(int rt) {
t[rt].MAX = max(t[rt << 1].MAX, t[rt << 1 | 1].MAX);
}

void build(int l, int r, int rt) {
t[rt].l = l; t[rt].r = r;
if (l == r) {
t[rt].MAX = -inf; return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1);
pushup(rt);
}

void upd(int loc, int rt, ll val) {
if (t[rt].l == t[rt].r) {
t[rt].MAX = val; return;
}
int mid = (t[rt].l + t[rt].r) >> 1;
if (loc <= mid)upd(loc, rt << 1, val);
if (mid < loc)upd(loc, rt << 1 | 1, val);
pushup(rt);
}

ll query(int L, int R, int rt) {
if (L <= t[rt].l&&t[rt].r <= R) {
return t[rt].MAX;
}
int mid = (t[rt].l + t[rt].r) >> 1;
ll ans = -inf;
if (L <= mid)ans = max(ans, query(L, R, rt << 1));
if (mid < R)ans = max(ans, query(L, R, rt << 1 | 1));
return ans;
}

int main()
{
// ios::sync_with_stdio(0);
rdllt(m); rdllt(MOD);
build(1, m , 1);
// for (int i = 1; i <= m * 4; i++)t[i].MAX = -inf;
ll ans = 0;
int tot = 0;
while (m--) {
char opt[2]; rdstr(opt);
if (opt[0] == 'A') {
ll n; rdllt(n);
n = ((n + MOD) % MOD + (ans + MOD) % MOD) % MOD;
upd(++tot, 1, n);
}
else {
int l = rd();
ans = query(tot - l + 1, tot, 1);
printf("%lld\n", ans);
}
}
return 0;
}

 

EPFL - Fighting

举报

相关推荐

0 条评论