目录
1、欧几里得定理
package Action;
public class demo {
/*
* 求最大公约数 最小公倍数 思路:根据欧几里得定理 gcd(a,b)=gcd(b,a%b);
*/
static int gcd(int a, int b) {
// 出口:b=0;5和0的最大公约数是5
if (b == 0)
return a;
return gcd(b, a % b);
}
static int lcm(int a, int b) {
return a * b / gcd(a, b);
}
public static void main(String[] args) {
System.out.println(gcd(45, 35));
System.out.println(lcm(45, 35));
System.out.println(gcd(42, 60));
System.out.println(lcm(42, 60));
}
}
2、最大公约数
package Action;
public class demo {
public static void main(String[] args) {
int max = 0;
for (int i = 1; i <= 70044; i++) {
if (70044 % i == 0 && 113148 % i == 0) {
max = i;
}
}
System.out.println(max);
}
}
3、最小公倍数
package Action;
import java.util.Scanner;
public class demo {
public static void main(String[] args) {
@SuppressWarnings("resource")
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
if (n % 2 == 0) {
if (n % 3 == 0) {
long m = (n - 1) * (n - 2) * (n - 3);
System.out.println(m);
} else {
long m = n * (n - 1) * (n - 3);
System.out.println(m);
}
} else {
long m = n * (n - 1) * (n - 2);
System.out.println(m);
}
}
}
4、海伦公式(求三角形面积)
package Action;
import java.util.Scanner;
public class demo {
public static void main(String[] args) {
@SuppressWarnings("resource")
Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
double l = (a + b + c) * 1.0 / 2;
double s = Math.sqrt(l * (l - a) * (l - b) * (l - c));
System.out.println(String.format("%.2f", s));
}
}
5、排序公式
暂时能想到这些,后面的再补充啊。