A. Vasily the Bear and Triangle
time limit per test
memory limit per test
input
output
favorite rectangle, it has one vertex at point (0, 0), and the opposite vertex at point (x, y). Of course, the sides of Vasya's favorite rectangle are parallel to the coordinate axes.
B = (0, 0). That's why today he asks you to find two points A = (x1, y1) and C = (x2, y2), such that the following conditions hold:
- x1,x2,y1,y2are integers. Besides, the following inequation holds:x1<x2;
- A,BandCis rectangular and isosceles (
- is right);
- ABC;
- ABC
Help the bear, find the required points. It is not so hard to proof that these points are unique.
Input
x, y ( - 109 ≤ x, y ≤ 109, x ≠ 0, y ≠ 0).
Output
x1, y1, x2, y2
Sample test(s)
input
10 5
output
0 15 15 0
input
-10 5
output
-15 0 0 15
Note
Figure to the first sample
大水题。。但是我没看到等腰(isosceles)
不说了。。说多了都是泪。。。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
ll a,b,t;
int main()
{
// freopen("tri.in","r",stdin);
cin>>a>>b;
int b1=a<0?-1:1,b2=b<0?-1:1;
t=abs(a)+abs(b);
//(t,0),(0,t)
int x1=t*b1,y1=0,x2=0,y2=t*b2;
if (x1>x2) swap(x1,x2),swap(y1,y2);
cout<<x1<<' '<<y1<<' '<<x2<<' '<<y2<<endl;
return 0;
}