0
点赞
收藏
分享

微信扫一扫

哪些 Python 库让你相见恨晚?



最近程沉迷于github,无法自拔,看到各种各样新奇又实用的第三方库。网络上有很多python库的排名、汇总,但总觉得不够具体生动。


01


数据可视化 -- pyecharts


GitHub Star :5985

功能:

1 简洁的 API 设计,使用如丝滑般流畅,支持链式调用 

2 囊括了 30+ 种常见图表,应有尽有 

3 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab 

4 可轻松集成至 Flask,Django 等主流 Web 框架 

5 高度灵活的配置项,可轻松搭配出精美的图表 

6 详细的文档和示例,帮助开发者更快的上手项目 

7 多达 400+ 地图文件以及原生的百度地图,为地理数据可视化提供强有力的支持

使用方法:


from pyecharts.charts import Bar  
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
# render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
# 也可以传入路径参数,如 bar.render("mycharts.html")
bar.render()


学习资料:https://pyecharts.org/#/zh-cn/

哪些 Python 库让你相见恨晚?_python


02


数据可视化 -- plotly


GitHub star :5235


功能:

1 交互式开源可视化框架,支持超过40种独特图表类型,涵盖统计、财务、地理、学术、三维等。 

2 建立在Javascript plotly库基础上,能使python用户创建基于web的可交互的可视化作品,其能在jupyter notebook上展示,而且可以导出为HTML。 

3 plotly还可以在非web编辑器上(如pycharm、spyder)绘制图表 

4 能导出出版级别的图片

使用方法:


import plotly.express as px 
iris = px.data.iris()
fig = px.scatter(iris, x="sepal_width", y="sepal_length")
fig.show()


学习资源:https://plot.ly/python/

哪些 Python 库让你相见恨晚?_github_02


03


数据可视化 -- bokeh


GitHub star :11061

功能:

1 专门针对Web浏览器的交互式、可视化Python绘图库 

2 提供优雅简洁的多功能可视化展示,能快速创建图表、仪表板和可视化应用 

3 可以做出像D3.js简洁漂亮的交互可视化效果,但是使用难度低于D3.js。 

4 独立的HTML文档或服务端程序 

5 可以处理大量、动态或数据流 支持Python (或Scala, R, Julia…) 

6 不需要使用Javascript

使用方法:


from bokeh.plotting import figure, output_file, show  
# 创建图表
p = figure(plot_width=300, plot_height=300, tools="pan,reset,save")
# 图表中添加圆
p.circle([1, 2.5, 3, 2], [2, 3, 1, 1.5], radius=0.3, alpha=0.5)
# 定义输出形式
output_file("foo.html")
# 展示图表
show(p)


哪些 Python 库让你相见恨晚?_github_03


03


公众号


哪些 Python 库让你相见恨晚?_github_04



举报

相关推荐

0 条评论