0
点赞
收藏
分享

微信扫一扫

k-means聚类anchor

Sophia的玲珑阁 2022-01-20 阅读 43
聚类kmeans

聚类代码一

def k_means(boxes, cluster_num): # median not mean
    box_number = boxes.shape[0]
    last_nearest = np.zeros((box_number,))
    clusters = boxes[np.random.choice(box_number, cluster_num, replace=False)]

    while True:
        distances = 1 - wh_iou(boxes, clusters) 
        current_nearest = np.argmin(distances, axis=1)
        if (last_nearest == current_nearest).all():
            break  
        center_sum = np.zeros(shape=(clusters))
        for i in range(boxes.shape[0]):
        	center_sum[current_nearest[i]] += boxes[i]
        for cluster in range(cluster_num):
        	clusters[cluster] = center_sum[cluster] / np.sum(current_nearest == cluster)
        last_nearest = current_nearest
    return clusters

聚类代码二

相比代码一更加简洁。

def k_means(boxes, cluster_num): 
    box_number = boxes.shape[0]
    last_nearest = np.zeros((box_number,))
    clusters = boxes[np.random.choice(box_number, cluster_num, replace=False)]

    while True:
        distances = 1 - wh_iou(boxes, clusters) 
        current_nearest = np.argmin(distances, axis=1)
        if (last_nearest == current_nearest).all():
            break  
        for cluster in range(cluster_num):
            clusters[cluster] = np.mean(boxes[current_nearest == cluster], axis=0)  
        last_nearest = current_nearest
    return clusters
举报

相关推荐

0 条评论