Pandas怎样实现DataFrame的Merge
Pandas的Merge,相当于Sql的Join,将不同的表按key关联到一个表
merge的语法:
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None)
- left,right:要merge的dataframe或者有name的Series
- how:join类型,'left', 'right', 'outer', 'inner'
- on:join的key,left和right都需要有这个key
- left_on:left的df或者series的key
- right_on:right的df或者seires的key
- left_index,right_index:使用index而不是普通的column做join
- suffixes:两个元素的后缀,如果列有重名,自动添加后缀,默认是('_x', '_y')
文档地址:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html
本章终点
- 电影数据集的join实例
- 理解merge时一对一、一对多、多对多的数量对齐关系
- 理解left join、right join、inner join、outer join的区别
- 如果出现非Key的字段重名怎么办
一、电影数据集的join实例
import pandas as pd
df_ratings = pd.read_csv(
r"D:\node\nd\Pandas_study\pandas_test\ratings.dat",
sep="::",
engine='python',
names="UserID::MovieID::Rating::Timestamp".split("::")
)
ratings = df_ratings.head()
print(ratings)
df_users = pd.read_csv(
r"D:\node\nd\Pandas_study\pandas_test\users.dat",
sep="::",
engine='python',
names="UserID::Gender::Age::Occupation::Zip-code".split("::")
)
users = df_users.head()
print(users)
df_movies = pd.read_csv(
r"D:\node\nd\Pandas_study\pandas_test\movies.dat",
sep="::",
engine='python',
names="MovieID::Title::Genres".split("::")
)
movies = df_movies.head()
print(movies)
1.评分数据和用户数据进行关联
df_ratings_user = pd.merge(
df_ratings,df_users,left_on="UserID",right_on="UserID",how = "inner"
)
print(df_ratings_user.head())
2、df_ratings_user形成的新表和电影表关联
df_ratings_user_movie = pd.merge(
df_ratings_user,df_movies,left_on="MovieID",right_on="MovieID",how="inner"
)
二、解merge时一对一、一对多、多对多的数量对齐关系
以下关系要正确理解:
- one-to-one:一对一关系,关联的key都是唯一的
- 比如(学号,姓名) merge (学号,年龄)
-
结果条数为:1*1
left = pd.DataFrame({'sno': [11, 12, 13, 14],
'name': ['name_a', 'name_b', 'name_c', 'name_d']
})
print(left)
right = pd.DataFrame({'sno': [11, 12, 13, 14],
'age': ['21', '22', '23', '24']
})
print(right)
a = pd.merge(
left,right,on="sno"
)
print(a)
- one-to-many:一对多关系,左边唯一key,右边不唯一key
- 比如(学号,姓名) merge (学号,[语文成绩、数学成绩、英语成绩])
-
结果条数为:1*N
left = pd.DataFrame({'sno': [11, 12, 13, 14],
'name': ['name_a', 'name_b', 'name_c', 'name_d']
})
print(left)
right = pd.DataFrame({'sno': [11, 11, 11, 12, 12, 13],
'grade': ['语文88', '数学90', '英语75','语文66', '数学55', '英语29']
})
print(right)
a = pd.merge(
left,right,on="sno"
)
print(a)
- many-to-many:多对多关系,左边右边都不是唯一的
- 比如(学号,[语文成绩、数学成绩、英语成绩]) merge (学号,[篮球、足球、乒乓球])
-
结果条数为:M*N
left = pd.DataFrame({'sno': [11, 11, 12, 12,12],
'爱好': ['篮球', '羽毛球', '乒乓球', '篮球', "足球"]
})
print(left)
right = pd.DataFrame({'sno': [11, 11, 11, 12, 12, 13],
'grade': ['语文88', '数学90', '英语75','语文66', '数学55', '英语29']
})
print(right)
a = pd.merge(
left,right,on="sno"
)
print(a)
三、理解left join、right join、inner join、outer join的区别
3-1 inner join 默认
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
print(left)
right = pd.DataFrame({'key': ['K0', 'K1', 'K4', 'K5'],
'C': ['C0', 'C1', 'C4', 'C5'],
'D': ['D0', 'D1', 'D4', 'D5']})
print(right)
a = pd.merge(
left,right,how="inner"
)
print(a)
3-2 left join 左边都会出现在结果里,右边的如果无法匹配则为null
b = pd.merge(
left,right,how="left"
)
print(b)
3-3 right join右边都会出现在结果里,左边的如果无法匹配则为null
c = pd.merge(
left,right,how="right"
)
print(c)
3-5 outer join 左边、右边都会出现在结果里,如果无法匹配则为null
d = pd.merge(
left,right,how="outer"
)
print(d)
四、如果出现非Key的字段重名怎么办
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K4', 'K5'],
'A': ['A10', 'A11', 'A12', 'A13'],
'D': ['D0', 'D1', 'D4', 'D5']})
print(left)
print(right)
a = pd.merge(
left,right,on="key"
)
print(a)
b = pd.merge(
#suffixes指定相同参数的后缀
left,right,on="key",suffixes=("_left","_right")
)
print(b)