0
点赞
收藏
分享

微信扫一扫

基于 IntelliJ 的 IDE 将提供 Wayland 支持

目录

一、前言

二、实验环境

三、PyTorch数据结构

0、分类

1、张量(Tensor)

2、张量操作(Tensor Operations)

3、变量(Variable)


一、前言

ChatGPT:

二、实验环境

        本系列实验使用如下环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib

关于配置环境问题,可参考前文的惨痛经历:

三、PyTorch数据结构

0、分类

  • Tensor(张量):Tensor是PyTorch中最基本的数据结构,类似于多维数组。它可以表示标量、向量、矩阵或任意维度的数组。
  • Tensor的操作:PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
  • Variable(变量):Variable是对Tensor的封装,用于自动求导。在PyTorch中,Variable会自动跟踪和记录对其进行的操作,从而构建计算图并支持自动求导。在PyTorch 0.4.0及以后的版本中,Variable被废弃,可以直接使用Tensor来进行自动求导。
  • Dataset(数据集):Dataset是一个抽象类,用于表示数据集。通过继承Dataset类,可以自定义数据集,并实现数据加载、预处理和获取样本等功能。PyTorch还提供了一些内置的数据集类,如MNIST、CIFAR-10等,用于方便地加载常用的数据集。
  • DataLoader(数据加载器):DataLoader用于将Dataset中的数据按批次加载,并提供多线程和多进程的数据预读功能。它可以高效地加载大规模的数据集,并支持数据的随机打乱、并行加载和数据增强等操作。
  • Module(模块):Module是PyTorch中用于构建模型的基类。通过继承Module类,可以定义自己的模型,并实现前向传播和反向传播等方法。Module提供了参数管理、模型保存和加载等功能,方便模型的训练和部署。

1、张量(Tensor

        

PyTorch数据结构:1、Tensor(张量):维度(Dimensions)、数据类型(Data Types)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/132909219

2、张量操作(Tensor Operations)

3、变量(Variable)

        在PyTorch中,Variable(变量)是早期版本中的一种概念,用于自动求导(autograd)。然而,从PyTorch 0.4.0版本开始,Variable已经被弃用,自动求导功能直接集成在张量(Tensor)中,因此不再需要显式地使用Variable。

        在早期版本的PyTorch中,Variable是一种包装张量的方式,它包含了张量的数据、梯度和其他与自动求导相关的信息。你可以对Variable进行各种操作,就像操作张量一样,而且它会自动记录梯度信息。然后,通过调用.backward()方法,可以对Variable进行反向传播,计算梯度,并将梯度传播到相关的变量。

import torch
from torch.autograd import Variable

# 创建一个Variable
x = Variable(torch.tensor([2.0]), requires_grad=True)

# 定义一个计算图
y = x ** 2 + 3 * x + 1

# 进行反向传播
y.backward()

# 获取梯度
gradient = x.grad
print("梯度:", gradient)  # 输出: tensor([7.])

        在上述代码中,我们首先将张量torch.tensor([2.0])包装成一个Variable,并设置requires_grad=True,表示我们希望计算该变量的梯度。然后,我们定义了一个计算图,计算了y = x ** 2 + 3 * x + 1。接下来,我们调用y.backward()对Variable进行反向传播,计算梯度。最后,我们通过x.grad获取了梯度值。

        需要注意的是,在PyTorch 0.4.0及更高版本中,Variable已经被弃用,自动求导直接集成在张量中。因此,你可以直接对张量使用.backward()方法进行自动求导,无需显式地使用Variable。

import torch

x = torch.tensor([2.0], requires_grad=True)

# 定义一个计算图
y = x ** 2 + 3 * x + 1

# 进行反向传播
y.backward()

# 获取梯度
gradient = x.grad
print("梯度:", gradient)  # 输出: tensor([7.])

举报

相关推荐

0 条评论