0
点赞
收藏
分享

微信扫一扫

02 Transformer 中 Add&Norm (残差和标准化)代码实现

sullay 2022-07-30 阅读 56

python/pytorch 基础

培训机构(Django 类似于 Transformers)

首先由一个 norm 函数

norm 里面做残差,会输入( x 和 淡粉色z1,残差值),输出一个值紫粉色的 z1

标准化

\[y = \frac{x-E(x)}{\sqrt{Var(x)+\epsilon}}*\gamma+\beta \]

\(E(x)\)

\(Var(x)\)

\(\epsilon\)

\(\gamma\)和\(\beta\)

class LayerNorm(nn.Module):

def __init__(self, feature, eps=1e-6):
"""
:param feature: self-attention 的 x 的大小
:param eps:
"""
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(feature))
self.b_2 = nn.Parameter(torch.zeros(feature))
self.eps = eps

def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

残差+标准化

class SublayerConnection(nn.Module):
"""
这不仅仅做了残差,这是把残差和 layernorm 一起给做了

"""
def __init__(self, size, dropout=0.1):
super(SublayerConnection, self).__init__()
# 第一步做 layernorm
self.layer_norm = LayerNorm(size)
# 第二步做 dropout
self.dropout = nn.Dropout(p=dropout)

def forward(self, x, sublayer):
"""
:param x: 就是self-attention的输入
:param sublayer: self-attention层
:return:
"""
return self.dropout(self.layer_norm(x + sublayer(x)))



举报

相关推荐

0 条评论