See LCS again
1000 ms | 内存限制: 65535
3
There are A, B two sequences, the number of elements in the sequence is n、m;
Each element in the sequence are different and less than 100000.
Calculate the length of the longest common subsequence of A and B.
The input has multicases.Each test case consists of three lines;
The first line consist two integers n, m (1 < = n, m < = 100000);
The second line with n integers, expressed sequence A;
The third line with m integers, expressed sequence B;
输出
For each set of test cases, output the length of the longest common subsequence of A and B, in a single line.
样例输入
5 4 1 2 6 5 4 1 3 5 4
样例输出
3
//函数lower_bound()在first和last中的前闭后开区间进行二分查找, //返回大于或等于val的第一个元素位置。如果所有元素都小于val, //则返回last的位置,且last的位置是越界的!返回查找元素的第一个 //可安插位置,也就是“元素值>=查找值”的第一个元素的位置
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 100010
using namespace std;
int a[N];
int b[N];
int dp[N];
int main()
{
int n,m,i,j;
int x;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
{
scanf("%d",&x);
dp[x]=i;
}
int r=0;
for(i=1;i<=m;i++)
{
scanf("%d",&x);
if(dp[x])
b[r++]=dp[x];
}
int p=0;
dp[p++]=b[0];
for(i=1;i<r;i++)
{
if(dp[p-1]<b[i])
dp[p++]=b[i];
else
{
x=lower_bound(dp,dp+p,b[i])-dp;
dp[x]=b[i];
}
}
printf("%d\n",p);
}
return 0;
}