目录
总结:在项目当中第一、第二种方法搭配使用,第三种冲突风险非常大,仅适合练习使用。
一. C++关键字(C++98)
C++总计63个关键字,C语言32个关键字。
下面只是看一下C++有多少关键字,不对关键字进行具体的讲解。后面对应文章会详细讲解。
asm | do | if | return | try | continue |
auto | double | inline | short | typedef | for |
bool | dynamic_cast | int | signed | typeid | public |
break | else | long | sizeof | typename | throw |
case | enum | mutable | static | union | wchar_t |
catch | explicit | namespace | static_cast | unsigned | default |
char | export | new | struct | using | friend |
class | extern | operator | switch | virtual | register |
const | false | private | template | void | true |
const_cast | float | protected | this | volatile | while |
delete | goto | reinterpret_cast |
二、C++的第一个程序
C++兼容C语言绝大多数的语法(部分地方存在改动),所以C语言实现的那套hello world依旧可以在C++下运行,如下图
// test.cpp
#include<stdio.h>
int main()
{
printf("hello world\n");
return 0;
}
在实际应用中,以VS为例,当文件后缀改为.cpp后,vs编译器看到是.cpp就会调用C++编译器编译,当文件后缀改为.c后,vs编译器就会调用C编译器编译;但是linux下要用g++编译,不再是gcc。
当然C++有一套自己的输入输出,严格说C++版本的hello world应该是这样写的。
// test.cpp
// 这里的std cout等都看不懂,没关系,下面会依次讲解
#include<iostream>
using namespace std;
int main()
{
cout << "hello world\n" << endl;
return 0;
}
三、命名空间
3.1.namespace的价值
如下图,我们定义了一个变量rand,如果我们不包含的头文件<stdlib.h>,可以直接使用,但是由于在这个头文件内,rand是被定义成一个函数,那么我们定义的rand就会与头文件中的rand发生冲突,产生重定义错误。
#include <stdio.h>
#include <stdlib.h>
int rand = 10;
int main()
{
// 编译报错:error C2365: “rand”: 重定义;以前的定义是“函数”
printf("%d\n", rand);
return 0;
}
看上去来说,这种情况我们似乎只要使用不同的名字就可以避免,但是在实际的项目工程中,不同人员之间,开发者与使用者之间,默契的使用不同的名称是完全不可能的,
简单的名称也无法满足巨大的需求,因此对于C语言来说这样的命名冲突是普遍存在的问题,C++引入namespace就是为了更好的解决这样的问题
3.2.namespace的定义
namespace zlr
{
// 命名空间中可以定义变量/函数/类型
int rand = 10;
int Add(int left, int right)
{
return left + right;
}
struct Node
{
struct Node* next;
int val;
};
}
我们上文说过,C/C++中不同的域中是不可以定义相同的变量的,原本C/C++中内只有全局域与局部域,大量的变量、函数、类挤在两个域内,会产生大量的冲突。而使用namespace+命名空间名就相当于在变量、函数、类周围建造了一堵墙,形成了命名空间域域其他域相互隔绝,命名空间名不同,虽然同属于命名空间域,但是不同墙之间也会隔绝,冲突大大减少。(注:实际项目实践中,不同的项目组之间会分配固定的命名空间名,因此命名空间域定义冲突的可能性非常低,如果冲突。)
以上图为例,C语言中,当局部与全局定义相同的变量时,查找逻辑是就近原则,先采用局部定义的变量。对于命名空间域来说,在变量周围建墙后,查找时只会在其他域在全局域中找。想要使用命名空间域内定义,有一定的要求。
//2. 命名空间可以嵌套
namespace zlr
{
namespace z1
{
int rand = 1;
int Add(int left, int right)
{
return left + right;
}
}
namespace z2
{
int rand = 2;
int Add(int left, int right)
{
return (left + right) * 10;
}
}
}
int main()
{
//……………………
return 0;
}
// 多文件中可以定义同名namespace,他们会默认合并到一起,就像同一个namespace一样
// Stack.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
namespace zlr
{
typedef int STDataType;
typedef struct Stack
{
int top;
int capacity;
}ST;
void STInit(ST* ps, int n);
void STDestroy(ST* ps);
void STPush(ST* ps, STDataType x);
void STPop(ST* ps);
STDataType STTop(ST* ps);
int STSize(ST* ps);
bool STEmpty(ST* ps);
}
// Stack.cpp
#include"Stack.h"
namespace zlr
{
void STInit(ST* ps, int n)
{
assert(ps);
ps->a = (STDataType*)malloc(n * sizeof(STDataType));
ps->top = 0;
ps->capacity = n;
}
// 栈顶
void STPush(ST* ps, STDataType x)
{
assert(ps);
// 满了, 扩容
if (ps->top == ps->capacity)
{
printf("扩容\n");
int newcapacity = ps->capacity == 0 ? 4 : ps->capacity
* 2;
STDataType* tmp = (STDataType*)realloc(ps->a,
newcapacity * sizeof(STDataType));
if (tmp == NULL)
{
perror("realloc fail");
return;
}
ps->a = tmp;
ps->capacity = newcapacity;
}
ps->a[ps->top] = x;
ps->top++;
}
//...
}
// Queue.h
#pragma once
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
namespace zlr
{
typedef int QDataType;
typedef struct QueueNode
{
int val;
struct QueueNode* next;
}QNode;
typedef struct Queue
{
QNode* phead;
QNode* ptail;
int size;
}Queue;
void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);
// 入队列
void QueuePush(Queue* pq, QDataType x);
// 出队列
void QueuePop(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);
}
// Queue.cpp
#include"Queue.h"
namespace zlr
{
void QueueInit(Queue* pq)
{
assert(pq);
pq->phead = NULL;
pq->ptail = NULL;
pq->size = 0;
}
// ...
}
// test.cpp
#include"Queue.h"
#include"Stack.h"
// 全局定义了一份单独的Stack
typedef struct Stack
{
int a[10];
int top;
}ST;
void STInit(ST* ps) {}
void STPush(ST* ps, int x) {}
int main()
{
// 调用全局的
ST st1;
STInit(&st1);
STPush(&st1, 1);
STPush(&st1, 2);
printf("%d\n", sizeof(st1));
// 调用zlr namespace的
zlr::ST st2;
printf("%d\n", sizeof(st2));
zlr::STInit(&st2);
zlr::STPush(&st2, 1);
zlr::STPush(&st2, 2);
return 0;
}
为了防止冲突,设计者当初设计之际也将语言本身自带的库放在std命名空间内,需要注意的是不同的库是放在不同的文件内,正是因为上文所讲的相同的namespace会被视为一份,所以当我们包含不同头文件时不会冲突(包含头文件后,也需要对应的方法才能使用头文件命名空间内的定义)。
3.2.命名空间使用
编译查找一个变量的声明/定义时,默认只会在局部或者全局查找,不会到命名空间里面去查找。所以下面程序会编译报错。所以我们要使用命名空间中定义的变量/函数,有三种方式:
域作用限定符写在对应函数或变量等名字左边,如上图,对于遭遇就近原则的变量,我们在其左边加上::(访问限定符左边加不加空格都不影响),那么变量采用的就是全局定义的值。
namespace zlr
{
int rand = 10;
}
int a = 0;
int main()
{
printf("%p\n", rand);
printf("%d\n", zlr::rand);
int a = 1;
printf("%d\n", a);
// ::域作用限定符
printf("%d\n",::a);
return 0;
}
我们要使用命名空间内定义的值,我们需要命名空间名+::+变量的形式,这样在编译环节,就相当于拆除对应的墙,可以进对应命名空间找到对应的量。
// 域
namespace zlr
{
int rand = 10;
int Add(int left, int right)
{
return left + right;
}
struct Node
{
struct Node* next;
int val;
};
}
int main()
{
printf("%d\n", zlr::Add(1, 1));
struct zlr::Node p1;
return 0;
}
对于命名空间内定义的函数和结构体,我们以如上图的形式使用,需要注意的是对于结构体,::右边接结构体名,因为结构体名才是我们实际定义的量,struct是关键字。
#include <stdio.h>
#include <stdlib.h>
// 域
namespace zlr
{
namespace z1
{
int rand = 1;
int Add(int left, int right)
{
return left + right;
}
}
namespace z2
{
int rand = 2;
int Add(int left, int right)
{
return (left + right) * 10;
}
}
}
int main()
{
printf("%d\n", zlr::z1::rand);
printf("%d\n", zlr::z2::rand);
return 0;
}
对于嵌套定义的命名空间,我们就需要一层一层的“拆墙”,才能使用最内部定义的对应量。
对于命名空间内的定义的量,每次使用都需要以上文第一种的方式来使用,无疑非常繁琐,我们最初使用命名空间的目的是防止命名冲突的问题,如果一个项目,我们能确保某一个量名字不会冲突或者冲突概率很小,并且这个量多次使用,那么我们就可以通过using+命名空间名+对象名形式,将对应量完全展开(其他量不受影响),这样量继续相当于全局定义的,可以直接使用。
#include <stdio.h>
namespace zlr
{
int a = 0;
int b = 1;
}
using zlr::a;
int main()
{
printf("%d\n", a);
printf("%d\n", zlr::b);
return 0;
}
除此之外,对于学生来说参加一些比赛或者写一下小算法的情况,可以确保一定不会遇到命名冲突的问题,并且需要经常使用std内的定义量,所以我们可以通过using+namespace+命名空间名的形式将对应命名空间完全展开,这样该命名空间内的所有量可以直接使用。
//展开头文件
#include <stdio.h>
namespace zlr
{
int a = 0;
int b = 1;
}
using namespace zlr;
int main()
{
printf("%d\n", a);
printf("%d\n", b);
return 0;
}
总结:在项目当中第一、第二种方法搭配使用,第三种冲突风险非常大,仅适合练习使用。
四、C++输入&输出
类似于我们所熟知的C语言内的<stdio.h>为了使用C++内的输入输出,以后我们也需要开头包含该头文件
#include <iostream>
#include<iostream>
using namespace std;
int main()
{
int a = 0;
cin >> a;
cout << "hello world\n" << endl;//完全展开std,直接使用
std::cout << "hello world\n" << std::endl;//不展开std的使用方式
return 0;
}
上段代码,cin这一段,cin是通过标准输入设备(键盘)通过>>提取输入的字符自动转换为对应的
int类型数据放到a中,cout这一行,cout代表着标准输出(这是代表控制台——运行代码常见的黑框框),然后"hello world\n" 通过<<被提取输出到控制台,endl(end line)通过<<再输出一个换行符,并刷新缓冲区。
#include<iostream>
using namespace std;
int main()
{
int a = 0;
double b = 0.1;
char c = 'x';
cout << a << " " << b << " " << c << "\n" << '\n' << endl;//输出多个空格
std::cout << a << " " << b << " " << c << std::endl;//输出单个空格
//cout输出不需要指定输出格式,自动识别类型
//scanf("%d%lf", &a, &b);
//printf("%d %lf\n", a, b);
double d = 2.22222222;
printf("%.2lf\n", d);
cout << d << endl;
cout << &d << endl;
// cin可以自动识别输入变量的类型
//cin >> a;
//cin >> b >> c;
cin >>a>> b >> c;
cout << a << endl;
cout << b << " " << c << endl;
return 0;
}
需要注意的是使用<<时,因为<<是二元操作符,像上图这样写就存在a、空格、cout三个操作数。只能一个一个输入。
#include <iostream>
using namespace std;
int main()
{
int a = 0;
double b = 0.1;
char c = 'x';
cout << a << " " << b << " " << c << endl;
std::cout << a << " " << b << " " << c << std::endl;
scanf("%d%lf", &a, &b);
printf("%d %lf\n", a, b);
// 可以自动识别变量的类型
cin >> a;
cin >> b >> c;
cout << a << endl;
cout << b << " " << c << endl;
return 0;
}
#include<iostream>
using namespace std;
int main()
{
// 在io需求比较高的地方,如部分大量输入的竞赛题中,加上以下3行代码
// 可以提高C++IO效率
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
return 0;
}
因为C++很多地方都要兼顾C,那么就会需要兼顾C的缓冲区的刷新等问题,在面对大量的IO需求的场景下(如竞赛)通常会加上如上中的三行代码来提高效率(本文仅为入门基础,具体原理不详细介绍)
五、缺省参数
#include <iostream>
using namespace std;
// 全缺省
void Func1(int a = 10, int b = 20, int c = 30)//全缺省
{
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl << endl;
}
// 半缺省
void Func2(int a, int b = 10, int c = 20)//半缺省
{
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl << endl;
}
int main()
{
Func1();//使用缺省参数设置的默认值
Func1(1);
Func1(1, 2);//依次赋值
Func1(1, 2, 3);
Func2(100);
Func2(100, 200);
Func2(100, 200, 300);
return 0;
}
// Stack.h
#include <iostream>
#include <assert.h>
using namespace std;
typedef int STDataType;
typedef struct Stack
{
STDataType* a;
int top;
int capacity;
}ST;
void STInit(ST* ps, int n = 4);
// Stack.cpp
#include"Stack.h"
// 缺省参数不能声明和定义同时给
void STInit(ST* ps, int n)
{
assert(ps && n > 0);
ps->a = (STDataType*)malloc(n * sizeof(STDataType));
ps->top = 0;
ps->capacity = n;
}
// test.cpp
#include"Stack.h"
int main()
{
ST s1;
STInit(&s1);
// 确定知道要插入1000个数据,初始化时一把开好,避免扩容
ST s2;
STInit(&s2, 1000);
return 0;
}
对于缺省参数的一个应用场景是,假如我们现在要开辟一个1000大小的栈,因为我们不可能清楚每次要开辟的栈的代销,所以初始化时只能赋予空值,然后一次次判断再扩容知道满足1000大小的需求,但这样的消耗是比较大的;但是现在我们使用缺省参数,如果知道要开辟的大小,那么我们直接将数值传入,初始化时就能开好;如果不知道要开辟的大小,那初始化时可以使用缺省值开一个4大小的栈。可以说很大提升了效率。
如果同时出现,就会出现不知道以谁为准的情况,所以规定函数声明给缺省值。
六、函数重载
#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{
cout << "int Add(int left, int right)" << endl;
return left + right;
}
double Add(double left, double right)
{
cout << "double Add(double left, double right)" << endl;
return left + right;
}
// 2、参数个数不同
void f()
{
cout << "f()" << endl;
}
void f(int a)
{
cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同(本质就是类型不同)
void f(int a, char b)
{
cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
cout << "f(char b, int a)" << endl;
}
int main()
{
Add(10, 20);
Add(10.1, 20.2);
f();
f(10);
f(10, 'a');
f('a', 10);
return 0;
}
对于C语言来说,我们在定义函数时,比如一个数的相加与两个数的相加、整形与整形的相加或者浮点型与整形的相加,这些在我们朴素认知中,这些只是是参数的类型或者个数不同,本质上应该都可以通过一个函数实现,但1是C语言中不允许同名函数的参数类型或者个数不同。因此为了实现这些基本没有差别的功能,我们不得不使用不同的名字去定义函数,调用起来也非常麻烦。
但是C++支持在同一作用域中出现形参不同或者个数不同的同名函数,这样C++函数调用就表现出了多态行为,使用更灵活,比如在上述代码中的两个Add尽管定义不同,但是使用起来就像是同一的函数。这样实际上就相当于众多相似的功能都集中到一个函数上,函数更完善、更方便。
// 下面两个函数构成重载
// f()但是调用时,会报错,存在歧义,编译器不知道调用谁
void f1()
{
cout << "f()" << endl;
}
void f1(int a = 10)
{
cout << "f(int a)" << endl;
}
但是需要注意的是像上述代码实现函数重载会出现问题,两个函数的参数不同构成函数重载,但是因为第二个函数又使用的了缺省参数,对于缺省参数来说不传参会使用缺省值,所以第二个函数可以不传递参数,但是第一个函数定义的也不同传参,所以调用f1(),会出现问题,编译器不知道调用谁。
七、引用
7.1.引用的概念和定义
C++中为了避免引入太多的运算符,会复用C语言的一些符号,比如前面的<< 和 >>,这里引用也和取地址使用了同一个符号&,大家注意使用方法角度区分就可以。
7.2.引用的特性
#include<iostream>
using namespace std;
int main()
{
int a = 0;
// 引用:b和c是a的别名
int& b = a;
int& c = a;
// 也可以给别名b取别名,d相当于还是a的别名
int& d = b;//
// 这里取地址我们看到是一样的
cout << &a << endl;
cout << &b << endl;
cout << &c << endl;
cout << &d << endl;
return 0;
}
#include<iostream>
using namespace std;
int main()
{
int a = 10;
// 编译报错:“ra”: 必须初始化引用
//int& ra;
int& b = a;
int c = 20;
cout << a << endl;
cout << b << endl;
cout << c << endl;
// 这里并非让b引用c,因为C++引用不能改变指向,
// 这里是一个赋值
b = c;
cout << &a << endl;
cout << &b << endl;
cout << &c << endl;
cout << a << endl;
cout << b << endl;
cout << c << endl;
}
7.3.引用的使用
void Swap(int& rx, int& ry)
{
int tmp = rx;
rx = ry;
ry = tmp;
}
void Swap(int* px, int* py)
{}
以实现交换功能为例,之前实现,我们都需要传递指针才能通过函数形参改变实参,但是现在引用是函数的别名,函数形参是引用的格式,实参直接传变量就行,这样我们不用传指针,通过引用就可以改变外面的值,同时引用不会开辟空间,我们还节省了空间。
此外对于取栈顶的STTOP过去在C语言内,我们是无法通过返回值去直接修改栈内的数据的,但是现在因为引用就是对应空间的别名,我们返回引用,我们就可以通过返回值直接修改栈内的值。
vector<int> v;
for (size_t i = 0; i < v.size(); i++)
{
v[i] = i;
}
上诉的功能使我们之后修改vector内的值可以像数组那样处理。(本文仅用于说明引用的价值,不详细介绍)
#include<iostream>
using namespace std;
typedef struct SeqList
{
int a[10];
int size;
}SLT;
// 一些主要用C代码实现版本数据结构教材中,使用C++引用替代指针传参,目的是简化程序,避开复
//杂的指针,但是很多同学没学过引用,导致一头雾水。
void SeqPushBack(SLT& sl, int x)
{}
typedef struct ListNode
{
int val;
struct ListNode* next;
}LTNode, * PNode;
// 指针变量也可以取别名,这里LTNode*& phead就是给指针变量取别名
// 这样就不需要用二级指针了,相对而言简化了程序
//void ListPushBack(LTNode** phead, int x)
//void ListPushBack(LTNode*& phead, int x)
void ListPushBack(PNode& phead, int x)
{
PNode newnode = (PNode)malloc(sizeof(LTNode));
newnode->val = x;
newnode->next = NULL;
if (phead == NULL)
{
phead = newnode;
}
else
{
//...
}
}
int main()
{
PNode plist = NULL;
ListPushBack(plist, 1);
return 0;
}
7.4.const引用
int main()
{
const int a = 10;
//int rd = a;
//int& ra = a;
int b = 0;
const int& rb = b;
b++;
//rb++;//只可以读值,不可以通过别名修改值
const int& ra = a;
const int& rc = 30;
return 0;
}
const int a的权限是只可以使用值,不可以修改值本身,权限不能放大,因此我们以相同的权限以const int & 为a1起别名(不能使用 int &起别名,这样可以通过别名修改a,权限放大了。),对于int b 我们即可以int&起别名,也可以以const int&(只可以使用,不可以修改)的权限缩小的方式为b起别名。此外const int&也可以为常量起别名。
需要注意的是权限放大的问题只存在引用与对应对象之间,两个对象间所使用的空间不同,不存在权限相互干扰的问题。
需要注意的是对表达式的值的结果使用引用、以不同类型引用变量发生类型转换或者整形提升等情形下,我们都需要使用const引用。
以上图第一种类型为例,当我们对表达式的结果引用时,表达式的结果是先暂存在一个临时对象(未命名的空间)内,这个未命名空间具有常性,我们需要使用const引用。(为这块未命名空间取别名后,这块未命名空间不会立刻销毁,就相当于成了一个正常的变量。)
第二种情况,由于引用的类型与对象的类型不同,对象会发生整形提升或者类型转换,这个过程的结果同样暂时存放在临时对象,然后再对这个临时对象引用。
注:以下图的push_back为例,const引用的价值在于使用之后,我们可以往参数内放任意值(表达式、常量、变量)的别名,不需要再开辟空间传值,既方便又节省。这个在进一步学习C++后会有更深的感受。
7.5.指针和引用的关系
C++中指针和引用就像两个性格迥异的亲兄弟,指针是哥哥,引用是弟弟,在实践中他们相辅相成,功能有重叠性,但是各有自己的特点,互相不可替代。
八、 inline
在C语言中,我们会通过将简短常用的函数改写为宏函数来减少反复的开销。但是如下图所示,想正确使用的宏函数的难度较大,说不定什么时候就踩到坑里。因此C++中就有inline内联函数来替代。
#include<iostream>
using namespace std;
// 实现一个ADD宏函数的常见问题
//#define ADD(int a, int b) return a + b;
//#define ADD(a, b) a + b;
//#define ADD(a, b) (a + b)
// 正确的宏实现
#define ADD(a, b) ((a) + (b))
// 为什么不能加分号?
// 为什么要加外面的括号?
// 为什么要加里面的括号?
int main()
{
int ret = ADD(1, 2);
cout << ADD(1, 2) << endl;
cout << ADD(1, 2) * 5 << endl;
int x = 1, y = 2;
ADD(x & y, x | y); // -> (x&y+x|y)
return 0;
}
之所以设计成这样是因为如果不加节制的将所有函数都展开,那么函数过大且调用频繁的函数全部展开,会出现代码膨胀的问题。
假设一个函数有大约一百条指令,但是这个函数在10000个位置调用,那么不展开是1000+100(不展开,始终开辟栈桢调用同一份指令),一但展开是10000*100条(每个地方都替换展开)。
这样代码膨胀,可执行程序就会变大,安装包会非常大,严重影响用户体验。
#include<iostream>
using namespace std;
inline int Add(int x, int y)
{
int ret = x + y;
ret += 1;
ret += 1;
ret += 1;
return ret;
}
int main()
{
// 可以通过汇编观察程序是否展开
// 有call Add语句就是没有展开,没有就是展开了
int ret = Add(1, 2);
cout << Add(1, 2) * 5 << endl;
return 0;
}
// F.h
#include <iostream>
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
// 链接错误:无法解析的外部符号 "void __cdecl f(int)" (?f@@YAXH@Z)
f(10);
return 0;
}
九、nullptr
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
#include<iostream>
using namespace std;
void f(int x)
{
cout << "f(int x)" << endl;
}
void f(int* ptr)
{
cout << "f(int* ptr)" << endl;
}
int main()
{
f(0);
// 本想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,调用了f(int
//x),因此与程序的初衷相悖。
f(NULL);
f((int*)NULL);
// 编译报错:error C2665: “f”: 2 个重载中没有一个可以转换所有参数类型
// f((void*)NULL);
f(nullptr);
return 0;
}
如上图,需要补充的是C++中NULL被定义为字面常量0,因为C++在相关检查方面比C语言更加严格,与C语言中void*的指针可以给任意类型的指针不同,C++中void*无法给任意类型,同时如果是隐式类型转换,那又该转换成哪一个呢?所以总的来说NULL在C++内的使用是有不小的风险的。