在本文中,我们通过一个名为WinBUGS的免费贝叶斯软件,可以很容易地完成基于似然的多变量随机波动率(SV)模型的估计和比较。通过拟合每周汇率的双变量时间序列数据,九个多变量SV模型,包括波动率中的格兰杰因果关系,时变相关性,重尾误差分布,加性因子结构和乘法因子结构的说明来说明想法。
单变量随机波动率(SV)模型为ARCH类型模型提供了强有力的替代方案,可以解释波动率的条件和无条件属性。
多元SV模型
金融资产收益的程式化事实
考虑到多变量SV模型对于描述金融资产收益的动态最有用,我们首先总结一些记录良好的金融资产收益的程式化事实:
- 资产收益分配是leptokurtic。
- 资产收益率波动率集群。
- 退货是交叉相关的。
- 波动性是交叉依赖的。
- 有时,一种资产格兰杰的波动导致另一种资产的波动(即,波动性从一个市场蔓延到另一个市场)。
- 通常存在较低维度因子结构,其可以解释大部分相关性。
- 相关性是随时间变化的。
除了这七个风格化的事实之外,诸如参数空间的维数和协方差矩阵的正半确定性之类的问题具有实际重要性。当我们审查现有模型并介绍我们的新模型时,我们将评论它们处理程式化事实和上述两个问题的适当性。
为了说明替代多变量SV模型之间的差异和联系,我们关注本文中的双变量情况。特别是,我们考虑了九种不同的双变量SV模型(带粗体的首字母缩略词),其中两种是文献的新手。此外,这些规范中的大多数都适用于多维概括,而模型5是唯一的例外。
模型2(恒定相关MSV或CC-MSV) 在该模型中,允许返回冲击相关,因此该模型类似于Bollerslev的常数条件相关(CCC)ARCH模型。因此,回报是相互依赖的。
模型3(具有格兰杰因果关系或GC-MSV的MSV)。
使用WinBUGS进行贝叶斯估计
第2.2节中的模型通过对所有未知参数a =(a 1,...,a p)的先验分布的规范来完成。例如,在模型1(MSV)中,p = 6并且未知参数的矢量a是
经验说明
数据
在本节中,我们将介绍的模型与实际财务时间序列数据相匹配。从1994年1月到2003年12月,所使用的数据是每周519次澳大利亚元和新西兰元的平均修正对数回报率。这两个系列的选择是因为这两个经济体彼此紧密相连,因此事先预计两种汇率之间的依赖性很强。这两个系列在图中绘制,其中回报和波动率的交叉依赖性确实显得很强。
澳元和新西兰元/美元汇率回报的时间序列图。