0
点赞
收藏
分享

微信扫一扫

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码

1 简介

Gravitational search algorithm is a popular adaptivesearch algorithm among nature-inspired algorithms and hasbeen successfully used for optimizing many real-world problems.Gravitational search algorithm uses the law of Newton gravityfor fifinding the optimal solution. The performance of gravitationalsearch algorithm is controlled by exploration and exploitationcapabilities and Kbest is one of its parameters that controlsthis trade-off. In this paper, a novel chaotic Kbest gravitationalsearch algorithm has been proposed that uses the chaotic modelin Kbest to balance the exploration and exploitation nonlinearly. The proposed algorithm shows better convergence rateat later iterations with high precision and does not trap intolocal optima.The experimental results validate that the proposedalgorithm outperforms.

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_matlab代码

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_matlab代码_02

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_sed_03

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_matlab代码_04

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_matlab代码_05

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_lua_06

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_sed_07

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_lua_08

2 部分代码

% Gravitational Search Algorithm.
function BestChart=GSA(F_index,N,max_it,ElitistCheck,chaosIndex,chValueInitial)
%V: Velocity.
%a: Acceleration.
%M: Mass. Ma=Mp=Mi=M;
%dim: Dimension of test function.
%N: Number of agents.
%X: Position of agents. dim-by-N matrix.
%R: Distance between agents in search space.
%[low-up]: Allowable range for search space.
%Rnorm: Norm in eq.8.
%Rpower: Power of R in eq.7.
G_History=zeros(1,max_it);
Rnorm=2;
Rpower=1;
min_flag=1; % 1: minimization, 0: maximization
%get allowable range and dimension of the test function.
[low,up,dim]=test_functions_range(F_index);
%random initialization for agents.
X=initialization(dim,N,up,low);
%create chart of best so far and average fitnesses.
BestChart=[];MeanChart=[];
V=zeros(dim,N);
wMax=chValueInitial;
wMin=1e-10;
for iteration=1:max_it
chValue=wMax-iteration*((wMax-wMin)/max_it);
% iteration
%Checking allowable range.
X=space_bound(X,up,low);
%Evaluation of agents.
fitness=evaluateF(X,F_index);
[best best_X]=min(fitness); %min: minimization. max: maximization.
if iteration==1
Fbest=best;Lbest=X(:,best_X);
end
if best<Fbest % < : minimization. > : maximization
Fbest=best;Lbest=X(:,best_X);
end
BestChart=[BestChart Fbest];
MeanChart=[MeanChart mean(fitness)];
%Calculation of M. eq.14-20
[M]=massCalculation(fitness,min_flag);
%Calculation of Gravitational constant. eq.13.
G=Gconstant(iteration,max_it);
%G=chaos(3,iteration,max_it,10);
switch chaosIndex
case 1
G=Gconstant(iteration,max_it);
case 2
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 3
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 4
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 5
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 6
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 7
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 8
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 9
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 10
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
case 11
G=G+chaos(chaosIndex-1,iteration,max_it,chValue);
end
G_History(iteration)=G;
test_G(iteration)=G;
if iteration==499
alisop=0;
end
%Calculation of accelaration in gravitational field. eq.7-10,21.
a=Gfield(M,X,G,Rnorm,Rpower,ElitistCheck,iteration,max_it);
%Agent movement. eq.11-12
[X,V]=move(X,a,V);
end %iteration

3 仿真结果

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_lua_09

4 参考文献

B. Zibanezhad, K. Zamanifar, N. Nematbakhsh, and F. Mardukhi, “Anapproach for web services composition based on qos and gravitationalsearch algorithm,” in Innovations in Information Technology, 2009.IIT’

International Conference on, 2009.[6] C. Lopez-Molina, H. Bustince, J. Fern´andez, P. Couto, and B. De Baets,“A gravitational approach to edge detection based on triangular norms,”Pattern Recognition, vol. 43, pp. 3730–3741, 2010.​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【智能优化算法】基于混沌引力搜索算法求解单目标问题附matlab代码_lua_10


举报

相关推荐

0 条评论