0
点赞
收藏
分享

微信扫一扫

直播推荐、搜索中的召回、相关性、多目标精排、特征、重排 - 多目标精排

7dcac6528821 2022-03-11 阅读 69
算法

1:深度排序模型在淘宝直播的演进与应用

淘内直播这篇文章把几种常见的多目标(mtl mmoe ple 这几种是默认每种目标之间没有关系 所以共同share一个底层数据、essm gmsl 贝叶斯mtl 与前面相反 把几种目标之间按照序串联起来 以此建模)写的很清楚

重点1:在shared MLP layer层还是共享,然后每个目标有自己的specific MLP layer。这种通过人工指定哪些要共享的方式称为hard parameter sharing layer

重点1:mmoe通过定义多个专家网络(里面一般由多个mlp层),再通过门控实现对不同目标间的权重学习,这种成为soft parameter sharing

腾讯ple

重点1:MMoE是所有的专家组都是共享的,它没有每个目标自己的一个专家组网络,所以又提出了在每个目标都有一个Specific的Expert的优化方案

重点1:通过引入pCTCVR=pCVR*pCTR的目标,对于cvr问题来说(点击+转化样本)解决了样本选择偏差问题(因为引入了ctr的曝光样本)

重点1:lazada提出来的GMSL网络在shared layer后面,为不同目标接了几个网络(这个很像mtl),然后每个目标的输出值再一起组成一个gru网络,每个node都对应一个有序的目标,最后一个node的输出值就可以是最后一个目标的预测值

重点1:最上层的多目标刻画 P(t1,t2,t3|x,H)=P(t3|t1,t2,x,H)*P(t2|t1,x,H)*P(t1,x,H) x代表特征

重点2:loss刻画 -L(x,H)=w1*log(P(t3|t1,t2,x,H))+w2*log(P(t2|t1,x,H))+w3*log(P(t1|x,H))

举报

相关推荐

0 条评论