文章目录
- UDF函数:用户自定义函数
- UDAF函数: 用户自定义聚合函数
UDF函数:用户自定义函数
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("udf");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> parallelize = sc.parallelize(Arrays.asList("zhangsan","lisi","wangwu"));
JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Row call(String s) throws Exception {
return RowFactory.create(s);
}
});
/**
* 动态创建Schema方式加载DF
*/
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("name", DataTypes.StringType,true));
StructType schema = DataTypes.createStructType(fields);
DataFrame df = sqlContext.createDataFrame(rowRDD,schema);
df.registerTempTable("user");
/**
* 根据UDF函数参数的个数来决定是实现哪一个UDF UDF1,UDF2。。。。UDF1xxx
*/
sqlContext.udf().register("StrLen",new UDF2<String, Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(String t1, Integer t2) throws Exception {
return t1.length() + t2;
}
} ,DataTypes.IntegerType );
sqlContext.sql("select name ,StrLen(name,100) as length from user").show();
sc.stop();
UDAF函数: 用户自定义聚合函数
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("udaf");
conf.set("spark.sql.shuffle.partitions", "1");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> parallelize = sc.parallelize(
Arrays.asList("zhangsan", "lisi", "wangwu", "zhangsan", "zhangsan", "lisi","zhangsan", "lisi", "wangwu", "zhangsan", "zhangsan", "lisi"),2);
JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Row call(String s) throws Exception {
return RowFactory.create(s);
}
});
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
StructType schema = DataTypes.createStructType(fields);
DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
df.registerTempTable("user");
注册一个UDAF函数,实现统计相同值的个数,注意:这里可以自定义一个类继承UserDefinedAggregateFunction类
sqlContext.udf().register("StringCount", new UserDefinedAggregateFunction() {
private static final long serialVersionUID = 1L;
/**
* 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果
*/
@Override
public void initialize(MutableAggregationBuffer buffer) {
buffer.update(0, 0);
System.out.println("init ....." + buffer.get(0));
}
/**
* 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑
* buffer.getInt(0)获取的是上一次聚合后的值
* 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合
* 大聚和发生在reduce端.
* 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算
*/
@Override
public void update(MutableAggregationBuffer buffer, Row arg1) {
buffer.update(0, buffer.getInt(0) + 1);
System.out.println("update.....buffer" + buffer.toString() + " | row" + arg1.toString() );
}
/**
* 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理
* 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来
* buffer1.getInt(0) : 大聚合的时候 上一次聚合后的值
* buffer2.getInt(0) : 这次计算传入进来的update的结果
* 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作
*/
public void merge(MutableAggregationBuffer buffer1, Row arg1) {
// 2 3 4 5 6 7
// 0 + 2 = 2
// 2 + 3 = 5
// 5 + 4 = 9
buffer1.update(0, buffer1.getInt(0) + arg1.getInt(0));
System.out.println("merge.....buffer : " + buffer1.toString() + "| row" + arg1.toString() );
}
/**
* 在进行聚合操作的时候所要处理的数据的结果的类型
*/
@Override
public StructType bufferSchema() {
return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("bffer", DataTypes.IntegerType, true)));
}
/**
* 最后返回一个和DataType的类型要一致的类型,返回UDAF最后的计算结果
*/
@Override
public Object evaluate(Row row) {
return row.getInt(0);
}
/**
* 指定UDAF函数计算后返回的结果类型
*/
@Override
public DataType dataType() {
return DataTypes.IntegerType;
}
/**
* 指定输入字段的字段及类型
*/
@Override
public StructType inputSchema() {
return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("name", DataTypes.StringType, true)));
}
/**
* 确保一致性 一般用true,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。
*/
@Override
public boolean deterministic() {
return true;
}
});
sqlContext.sql("select name ,StringCount(name) as number from user group by name").show();
sc.stop();