目录
今日份笔记:
1 pd.to_datetime
print(pd.to_datetime('2018-07'))
输出:2018-07-01 00:00:00
该方法将时间戳或日期统一输出为格式:年月日时分秒。
2 groupby
#=========1创建数据=========
import pandas as pd
import numpy as np
df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
'key2':['one', 'two', 'one', 'two', 'one'],
'data1':np.random.randn(5),
'data2':np.random.randn(5)})
print(df)
#=======2进行拆分==========
grouped=df['data1'].groupby(df['key1'])
print(grouped)
#=======3进行聚合计算=====
print(grouped.mean())
Testing started at 23:00 ...
key1 key2 data1 data2
0 a one -0.919658 0.450728
1 a two 0.031374 1.066755
2 b one -2.269761 -0.099858
3 b two -0.690892 0.596098
4 a one -1.251843 -1.643419
<pandas.core.groupby.generic.SeriesGroupBy object at 0x000000000B47A430>
key1
a -0.713376
b -1.480327
Name: data1, dtype: float64
3 range(len())
a=("123","456","789")
for i in range(len(a)):
print(i,a)
运行结果:
0 ('123', '456', '789')
1 ('123', '456', '789')
2 ('123', '456', '789')
for i in range(0, len(arr))
#这里发生的是您获得的增量值基于数组的大小,这样您就可以将该值用作列表的索引。