0
点赞
收藏
分享

微信扫一扫

POJ 1769 Minimizing maximizer (dp + 线段树)


题意:

找最少的区间使得依次连续覆盖所有n 个数。

思路:

令dp[i]表示覆盖到 以i 为终点的区间的最少个数。

那么dp[i] 转移肯定来自  s[j]~t[j] 里面的,我们需要 找一个k 使得 s[j] <= k <= t[j] 中  dp[k]最小值。

dp[i] = min(dp[i], dp[k]+1);

找最小值可以用线段树优化。

边界是dp[1] = 0

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

int n, m;

int dp[50000 + 7];
int MIN[50000+7<<2];

const int inf = 0x3f3f3f3f;



void build(int l,int r,int o){
    if (l == r){
        MIN[o] = dp[l];
        return;
    }
    int m = l+r>>1;
    build(l,m,o<<1);
    build(m+1,r,o<<1|1);
    MIN[o] = min(MIN[o<<1], MIN[o<<1|1]);
}

int query(int L,int R,int l,int r,int o){
    if (L <= l && r <= R){
        return MIN[o];
    }

    int m = l+r>>1;
    int ans = inf;
    if (m >= L) ans = min(ans,query(L,R,l,m,o<<1));
    if (m < R) ans = min(ans,query(L,R,m+1,r,o<<1|1));
    return ans;
}


void update(int p,int v,int l,int r,int o){
    if (l == r){
        MIN[o] = v;
        return;
    }
    int m = l+r>>1;
    if (p <= m)update(p,v,l,m,o<<1);
    else update(p,v,m+1,r,o<<1|1);
    MIN[o] = min(MIN[o<<1],MIN[o<<1|1]);
}

int main(){
    scanf("%d %d",&n, &m);
    memset(dp,inf,sizeof dp);
    dp[1] = 0;
    build(1,n,1);
    for (int i = 0; i < m; ++i){
        int u,v;
        scanf("%d %d",&u, &v);
        int qq = query(u,v,1,n,1);
        if (qq+1 < dp[v]){
            dp[v] = qq+1;
            update(v,dp[v],1,n,1);
        }
    }
    printf("%d\n",dp[n]);
    return 0;
}

/**
40 6
20 30
1 10
10 20
20 30
15 25
30 40

ans = 4;

**/



Minimizing maximizer



Description



The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs. 

Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer. 

An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values? 

Task 
Write a program that: 

reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline, 
computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data, 
writes the result. 


Input



The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.


Output



The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.


Sample Input


40 620 301 1010 2020 3015 2530 40


Sample Output


4


Hint



Huge input data, scanf is recommended.


Source



Central Europe 2003

Time Limit: 5000MS

 

Memory Limit: 30000K

Total Submissions: 4282

 

Accepted: 1756


[Submit]   [Go Back]   [Status]   [Discuss]

POJ 1769 Minimizing maximizer (dp + 线段树)_#include

Home Page   

POJ 1769 Minimizing maximizer (dp + 线段树)_最小值_02

Go Back  

POJ 1769 Minimizing maximizer (dp + 线段树)_ci_03

To top

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator




举报

相关推荐

0 条评论