0
点赞
收藏
分享

微信扫一扫

并发编程的艺术(10):深入了解Java里的线程池

沪钢木子 2022-04-21 阅读 77
java

1 线程池

1.1. 自定义线程池

步骤 1 :自定义拒绝策略接口

@FunctionalInterface // 拒绝策略
interface RejectPolicy<T> {
    void reject(BlockingQueue<T> queue, T task);
}

步骤 2 :自定义任务队列

class BlockingQueue<T> {
    // 1. 任务队列
    private Deque<T> queue = new ArrayDeque<>();
    // 2. 锁
    private ReentrantLock lock = new ReentrantLock();
    // 3. 生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    // 4. 消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();
    // 5. 容量
    private int capcity;
    public BlockingQueue(int capcity) {
        this.capcity = capcity;
    }
    // 带超时阻塞获取
    public T poll(long timeout, TimeUnit unit) {
        lock.lock();
        try {
            // 将 timeout 统一转换为 纳秒
            long nanos = unit.toNanos(timeout);
            while (queue.isEmpty()) {
                try {
                    // 返回值是剩余时间
                    if (nanos <= 0) {
                        return null;
                    }
                    nanos = emptyWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞获取
    public T take() {
        lock.lock();
        try {
            while (queue.isEmpty()) {
                try {
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞添加
    public void put(T task) {
        lock.lock();
        try {
            while (queue.size() == capcity) {
                try {
                    log.debug("等待加入任务队列 {} ...", task);
                    fullWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }
    // 带超时时间阻塞添加
    public boolean offer(T task, long timeout, TimeUnit timeUnit) {
        lock.lock();
        try {
            long nanos = timeUnit.toNanos(timeout);
            while (queue.size() == capcity) {
                try {
                    if(nanos <= 0) {
                        return false;
                    }
                    log.debug("等待加入任务队列 {} ...", task);
                    nanos = fullWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
            return true;
        } finally {
            lock.unlock();
        }
    }
    public int size() {
        lock.lock();
        try {
            return queue.size();
        } finally {
            lock.unlock();
        }
    }
    public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
        lock.lock();
        try {
            // 判断队列是否满
            if(queue.size() == capcity) {
                rejectPolicy.reject(this, task);
            } else { // 有空闲
                log.debug("加入任务队列 {}", task);
                queue.addLast(task);
                emptyWaitSet.signal();
            }
        } finally {
            lock.unlock();
        }
    }
}

步骤 3 :自定义线程池

class ThreadPool {
    // 任务队列
    private BlockingQueue<Runnable> taskQueue;
    // 线程集合
    private HashSet<Worker> workers = new HashSet<>();
    // 核心线程数
    private int coreSize;
    // 获取任务时的超时时间
    private long timeout;
    private TimeUnit timeUnit;
    private RejectPolicy<Runnable> rejectPolicy;
    // 执行任务
    public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if(workers.size() < coreSize) {
                Worker worker = new Worker(task);
                log.debug("新增 worker{}, {}", worker, task);
                workers.add(worker);
                worker.start();
            } else {
                // taskQueue.put(task);
                // 1) 死等
                // 2) 带超时等待
                // 3) 让调用者放弃任务执行
                // 4) 让调用者抛出异常
                // 5) 让调用者自己执行任务
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
    public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity,
                      RejectPolicy<Runnable> rejectPolicy) {
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.taskQueue = new BlockingQueue<>(queueCapcity);
        this.rejectPolicy = rejectPolicy;
    }
    
    
    
    ======================================================================
        
//执行任务的线程对象,run方法中利用while循环不停地从队列中获取任务
    class Worker extends Thread{
        private Runnable task;
        public Worker(Runnable task) {
            this.task = task;
        }
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
            // while(task != null || (task = taskQueue.take()) != null) {
            while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {
                    log.debug("正在执行...{}", task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            synchronized (workers) {
                log.debug("worker 被移除{}", this);
                workers.remove(this);
            }
        }
    }
}

步骤 4 :测试

public static void main(String[] args) {
    ThreadPool threadPool = 
        new ThreadPool(1,1000, TimeUnit.MILLISECONDS, 1,
               (queue, task)->{
                    // 1) 死等  queue.put(task);
                    // 2) 带超时等待 queue.offer(task,1500,TimeUnit.MILLISECONDS);
                    // 3) 让调用者放弃任务执行 log.debug("放弃{}", task);
                    // 4) 让调用者抛出异常 throw new RuntimeException("任务执行失败 " + task);
                    // 5) 让调用者自己执行任务task.run();
                                 });
    
    for (int i = 0; i < 4; i++) {
        int j = i;
        threadPool.execute(() -> {
            try {
                Thread.sleep(1000L);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug("{}", j);
        });
    }
}

1.2. ThreadPoolExecutor

1.2.1线程池状态

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量

状态名 高 3位 接收新任务 处理阻塞队列任务 说明
RUNNING 111 Y Y
SHUTDOWN 000 N Y 不会接收新任务, 但会处理阻塞队列剩余任务
STOP 001 N N 会中断正在执行的任务,并抛弃阻塞队列任务
TIDYING 010 - - 任务全执行完毕,活动线程为 0 即将进入终结
TERMINATED 011 - - 终结状态

从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING(负数)

这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作进行赋值

// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }

1.2.2构造方法

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler)

参数含义:

  • corePoolSize 核心线程数目 (最多保留的线程数) //核心线程数并不是指某几个固定的线程,而是指池中会保留核心线程数的线程不停地去队列里获取任务执行
  • maximumPoolSize 最大线程数目
  • keepAliveTime 生存时间 - 针对救急线程 //设置了生存时间那么去队列里获取任务时就会有超时时间,如果过了这个时间还没有偶去到任务就会销毁这个线程,销毁后会判断此时是否有核心线程数个线程存活,没有的话会创建
  • unit 时间单位 - 针对救急线程
  • workQueue 阻塞队列
  • threadFactory 线程工厂 - 可以为线程创建时起个好名字
  • handler 拒绝策略

工作方式:


image.png

  1. 线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
  2. 当线程数达到 corePoolSize 后,后续任务都是先加到队列中再由线程从队列中获取任务。

线程池源码-获取任务方法.png

  1. 当线程数达到 corePoolSize 并且没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排队,直到有空闲的线程。
  2. 如果队列选择了==有界队列==,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急(救急线程会先执行最新的那个任务)。
  3. 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它著名框架也提供了实现
    • AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
    • CallerRunsPolicy 让调用者运行任务
    • DiscardPolicy 放弃本次任务
    • DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
    • Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题
    • Netty 的实现,是创建一个新线程来执行任务
    • ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
    • PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略

  1. 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由keepAliveTime 和 unit 来控制。

线程池源码-线程执行方法.png
线程池的执行结果只能按照任务的添加顺序获取,可利用ExecutorCompletionService类实现按任务完成先后顺序获取
微信图片_20220227153646.jpg

结合源码,这边文章中有更为详细的解释
https://www.cnblogs.com/yszzu/p/10122658.html

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池

1.2.3 newFixedThreadPool

构造方法

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

特点:

  • 核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间
  • 阻塞队列是无界的,可以放任意数量的任务
  • 适用于任务量已知,相对耗时的任务

1.2.4 newCachedThreadPool

public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor( 0 , Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

特点:

  • 核心线程数是 0 , 最大线程数是 Integer.MAXVALUE
  • 救急线程的空闲生存时间是 60s,意味着
    • 全部都是救急线程(60s 后可以回收)
    • 救急线程可以无限创建
  • 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)

SynchronousQueue 效果演示代码

SynchronousQueue<Integer> integers = new SynchronousQueue<>();
//向队列存放任务
new Thread(() -> {
    try {
        log.debug("putting {} ", 1);
        integers.put(1);
        log.debug("{} putted...", 1);
        log.debug("putting...{} ", 2);
        integers.put(2);
        log.debug("{} putted...", 2);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t1").start();

sleep(1);

//取任务
new Thread(() -> {
    try {
        log.debug("taking {}", 1);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t2").start();

sleep(1);

new Thread(() -> {
    try {
        log.debug("taking {}", 2);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t3").start();

输出

11:48:15.500 c.TestSynchronousQueue [t1] - putting 1
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted...
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted...

结果显示只有应急线程创建后并且来队列取任务,任务才能放进队列。此时队列有点像容量为0,只是作为应急线程和任务线程之间通信的地点。

整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1 分钟后释放线程。

适合任务数比较密集,但每个任务执行时间较短的情况

1.2.5newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService //Executors的内部类
        (new ThreadPoolExecutor( 1 , 1 ,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}

使用场景:

希望多个任务排队执行。线程数固定为 1 ,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。

与单纯创建一个新线程的区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一个线程,保证池的正常工作。
  • Executors.newSingleThreadExecutor() 线程个数始终为 1 ,不能修改
    • FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法
  • Executors.newFixedThreadPool(1) 初始时为 1 ,以后还可以修改
    • 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改

代码演示

 public static void test2() {
        ExecutorService pool = Executors.newSingleThreadExecutor();
        pool.execute(() -> {//尽管这个任务执行失败了,但后续如果有别的任务依然可以正常执行
            log.debug("1");
            int i = 1 / 0;
        });

        pool.execute(() -> {
            log.debug("2");
        });

        pool.execute(() -> {
            log.debug("3");
        });
    }

    private static void test1() {
        ExecutorService pool = Executors.newFixedThreadPool(2, new ThreadFactory() {
            private AtomicInteger t = new AtomicInteger(1);

            @Override
            public Thread newThread(Runnable r) {
                return new Thread(r, "mypool_t" + t.getAndIncrement());
            }
        });

        pool.execute(() -> {
            log.debug("1");
        });

        pool.execute(() -> {
            log.debug("2");
        });

        pool.execute(() -> {
            log.debug("3");
        });
    }

结果

Exception in thread "pool-1-thread-1" java.lang.ArithmeticException: / by zero
1
	at com.example.demo.com.example.demo.test0522.lambda$test2$0(test0522.java:31)
2
3
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)

打印结果其实也证明了另一件事,就是一个线程抛出异常并不影响其他线程的执行

《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
Executors 返回线程池对象的弊端如下:

  • FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为 Integer.MAX_VALUE (无界队列),可能堆积大量的请求,从而导致 OOM。
  • CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。

1.2.6 提交任务

// 执行任务
void execute(Runnable command);

// 提交任务 task,用返回值 Future 获得任务执行结果
<T> Future<T> submit(Callable<T> task);

// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
    throws InterruptedException;

// 提交 tasks 中所有任务,带超时时间
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                          long timeout, TimeUnit unit)throws InterruptedException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
    throws InterruptedException, ExecutionException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
                long timeout, TimeUnit unit)
    throws InterruptedException, ExecutionException, TimeoutException;

1.2.7 关闭线程池

shutdown

/*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();
=======================================
public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(SHUTDOWN);
        // 仅会打断空闲线程
        interruptIdleWorkers();
        onShutdown(); // 扩展点 ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)
    tryTerminate();
}

shutdownNow

/*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List<Runnable> shutdownNow();

======================================================
public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(STOP);
        // 打断所有线程
        interruptWorkers();
        // 获取队列中剩余任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 尝试终结
    tryTerminate();
    return tasks;
}

其它方法

// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();
// 线程池状态是否是 TERMINATED
boolean isTerminated();
// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事
情,可以利用此方法等待
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

1.2.8模式之 Worker Thread

异步模式之工作线程

1.2.8.1定义

让有限的工作线程(Worker Thread)来轮流异步处理无限多的任务。也可以将其归类为分工模式,它的典型实现就是线程池,也体现了经典设计模式中的享元模式。

例如,海底捞的服务员(线程),轮流处理每位客人的点餐(任务),如果为每位客人都配一名专属的服务员,那么成本就太高了(对比另一种多线程设计模式:Thread-Per-Message)

注意,不同任务类型应该使用不同的线程池,这样能够避免饥饿,并能提升效率

例如,如果一个餐馆的工人既要招呼客人(任务类型A),又要到后厨做菜(任务类型B)显然效率不咋地,分成服务员(线程池A)与厨师(线程池B)更为合理,当然你能想到更细致的分工

1.2.8.2 饥饿

固定大小线程池饥饿会有现象

  • 两个工人是同一个线程池中的两个线程
  • 他们要做的事情是:为客人点餐和到后厨做菜,这是两个阶段的工作
    • 客人点餐:必须先点完餐,等菜做好,上菜,在此期间处理点餐的工人必须等待
    • 后厨做菜:没啥说的,做就是了
  • 比如工人A 处理了点餐任务,接下来它要等着 工人B 把菜做好,然后上菜,他俩也配合的蛮好
  • 但现在同时来了两个客人,这个时候工人A 和工人B 都去处理点餐了,这时没人做饭了,饥饿

注意和前面的饥饿进行区分,前面的饥饿是指线程一直没有获得cpu执行权,而这里是值线程池里没有空闲线程执行任务。

public class TestDeadLock {
    static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");
    static Random RANDOM = new Random();
    static String cooking() {
        return MENU.get(RANDOM.nextInt(MENU.size()));
    }
    public static void main(String[] args) {
        //只有两个核心线程
        ExecutorService executorService = Executors.newFixedThreadPool(2);
        executorService.execute(() -> {
            log.debug("处理点餐...");
            Future<String> f = executorService.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
        
        /*executorService.execute(() -> {
					log.debug("处理点餐...");
					Future<String> f = executorService.submit(() -> {
					log.debug("做菜");
					return cooking();
					});
		  try {
				log.debug("上菜: {}", f.get());
		  } catch (InterruptedException | ExecutionException e) {
				e.printStackTrace();
		  }
        });*/
    }
}

输出

17:21:27.883 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:21:27.891 c.TestDeadLock [pool-1-thread-2] - 做菜
17:21:27.891 c.TestDeadLock [pool-1-thread-1] - 上菜: 烤鸡翅

注释打开的话,可能结果为:

17:08:41.339 c.TestDeadLock [pool-1-thread-2] - 处理点餐...
17:08:41.339 c.TestDeadLock [pool-1-thread-1] - 处理点餐...

线程池中已有两个线程都在点餐,没有多余的线程处理别的任务,而此时已有的两个线程内都在等待空闲线程执行做菜的任务,造成了饥饿。

解决办法

解决方法可以增加线程池的大小,不过不是根本解决方案,还是前面提到的,不同的任务类型,采用不同的线程池,例如:

public class TestDeadLock {
    static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");
    static Random RANDOM = new Random();
    static String cooking() {
        return MENU.get(RANDOM.nextInt(MENU.size()));
    }
    public static void main(String[] args) {
        ExecutorService waiterPool = Executors.newFixedThreadPool(1);
        ExecutorService cookPool = Executors.newFixedThreadPool(1);
        waiterPool.execute(() -> {
            log.debug("处理点餐...");
            Future<String> f = cookPool.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
        waiterPool.execute(() -> {
            log.debug("处理点餐...");
            Future<String> f = cookPool.submit(() -> {
                log.debug("做菜");
                return cooking();
            });
            try {
                log.debug("上菜: {}", f.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        });
    }
}

输出

17:25:14.626 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:25:14.630 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.631 c.TestDeadLock [pool-1-thread-1] - 上菜: 地三鲜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:25:14.632 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 上菜: 辣子鸡丁
1.2.8.3创建多大线程池合适
  • 过小会导致程序不能充分地利用系统资源、容易导致饥饿
  • 过大会导致更多的线程上下文切换,占用更多内存

CPU 密集型运算

通常采用==cpu 核数 + 1== 能够实现最优的 CPU 利用率,+1 是保证当线程由于页缺失故障(操作系统)或其它原因导致暂停时,额外的这个线程就能顶上去,保证 CPU 时钟周期不被浪费。

I/O 密集型运算

CPU 不总是处于繁忙状态,例如,当你执行业务计算时,这时候会使用 CPU 资源,但当你执行 I/O 操作时、远程RPC 调用时,包括进行数据库操作时,这时候 CPU 就闲下来了,你可以利用多线程提高它的利用率。

经验公式如下:

线程数 = 核数 * 期望 CPU 利用率 * 总时间(CPU计算时间+等待时间) / CPU 计算时间

例如 4 核 CPU 计算时间是 50% ,其它等待时间是 50%,期望 cpu 被 100% 利用,套用公式
4 * 100% * 100% / 50% = 8

例如 4 核 CPU 计算时间是 10% ,其它等待时间是 90%,期望 cpu 被 100% 利用,套用公式
4 * 100% * 100% / 10% = 40

1.2.9任务调度线程池

在『任务调度线程池』功能加入之前,可以使用 java.util.Timer 来实现定时功能,Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此==所有任务都是串行执行的,同一时间只能有一个任务在执行==,前一个任务的延迟或异常都将会影响到之后的任务。

public static void main(String[] args) {
    Timer timer = new Timer();
    TimerTask task1 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 1");
            sleep(2);
        }
    };
    TimerTask task2 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 2");
        }
    };
    // 使用 timer 添加两个任务,希望它们都在 1s 后执行
    // 但由于 timer 内只有一个线程来顺序执行队列中的任务,因此『任务1』的延时,影响了『任务2』的执行
    timer.schedule(task1, 1000);
    timer.schedule(task2, 1000);
}

输出

20:46:09.444 c.TestTimer [main] - start...
20:46:10.447 c.TestTimer [Timer-0] - task 1
20:46:12.448 c.TestTimer [Timer-0] - task 2

使用 ScheduledExecutorService 改写:

两个任务都在 1s 后执行

ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
// 添加两个任务,希望它们都在 1s 后执行
executor.schedule(() -> {
    System.out.println("任务1,执行时间:" + new Date());
    try { 
        Thread.sleep(2000);
    } catch (InterruptedException e) { 
    }
}, 1000, TimeUnit.MILLISECONDS);

executor.schedule(() -> {
    System.out.println("任务2,执行时间:" + new Date());
}, 1000, TimeUnit.MILLISECONDS);

输出

任务 1 ,执行时间:Thu Jan 03 12:45:17 CST 2019
任务 2 ,执行时间:Thu Jan 03 12:45:17 CST 2019

scheduleAtFixedRate 例子:

ScheduledExecutorService pool = Executors.newScheduledThreadPool( 1 );
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
    log.debug("running...");
}, 1 , 1 , TimeUnit.SECONDS);

输出

21:45:43.167 c.TestTimer [main] - start...
21:45:44.215 c.TestTimer [pool-1-thread-1] - running...
21:45:45.215 c.TestTimer [pool-1-thread-1] - running...
21:45:46.215 c.TestTimer [pool-1-thread-1] - running...
21:45:47.215 c.TestTimer [pool-1-thread-1] - running...

scheduleAtFixedRate 例子(任务执行时间超过了间隔时间):

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
    log.debug("running...");
    sleep(2);
}, 1, 1, TimeUnit.SECONDS);

输出分析:一开始,延时 1s,接下来,由于任务执行时间 > 间隔时间,间隔被『撑』到了 2s

21:44:30.311 c.TestTimer [main] - start...
21:44:31.360 c.TestTimer [pool-1-thread-1] - running...
21:44:33.361 c.TestTimer [pool-1-thread-1] - running...
21:44:35.362 c.TestTimer [pool-1-thread-1] - running...
21:44:37.362 c.TestTimer [pool-1-thread-1] - running...

scheduleWithFixedDelay 例子:

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleWithFixedDelay(()-> {
    log.debug("running...");
    sleep(2);
}, 1, 1, TimeUnit.SECONDS);

输出

21:40:55.078 c.TestTimer [main] - start...
21:40:56.140 c.TestTimer [pool-1-thread-1] - running...
21:40:59.143 c.TestTimer [pool-1-thread-1] - running...
21:41:02.145 c.TestTimer [pool-1-thread-1] - running...
21:41:05.147 c.TestTimer [pool-1-thread-1] - running...

分析:一开始,延时 1s,scheduleWithFixedDelay 的间隔是 上一个任务结束 <-> 延时 <-> 下一个任务开始 所以间隔都是 3s。

整个线程池表现为:线程数固定,任务数多于线程数时,会放入无界队列排队。任务执行完毕,这些线程也不会被释放。用来执行延迟或反复执行的任务。

1.2.10正确处理执行任务异常

方法 1 :主动捉异常

ExecutorService pool = Executors.newFixedThreadPool( 1 );
pool.submit(() -> {
    try {
        log.debug("task1");
        int i = 1 / 0 ;
    } catch (Exception e) {
        log.error("error:", e);
    }
});

输出

21:59:04.558 c.TestTimer [pool-1-thread-1] - task1
21:59:04.562 c.TestTimer [pool-1-thread-1] - error:
java.lang.ArithmeticException: / by zero
at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

方法 2 :使用 Future

ExecutorService pool = Executors.newFixedThreadPool(1);
Future<Boolean> f = pool.submit(() -> {
    log.debug("task1");
    int i = 1 / 0;
    return true;
});
log.debug("result:{}", f.get());

输出

21:54:58.208 c.TestTimer [pool-1-thread-1] - task1
Exception in thread "main" java.util.concurrent.ExecutionException:
java.lang.ArithmeticException: / by zero
at java.util.concurrent.FutureTask.report(FutureTask.java:122)
at java.util.concurrent.FutureTask.get(FutureTask.java:192)
at cn.itcast.n8.TestTimer.main(TestTimer.java:31)
Caused by: java.lang.ArithmeticException: / by zero
at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

1.2.11应用之定时任务

如何让每周四 18:00:00 定时执行任务?

// 获得当前时间
LocalDateTime now = LocalDateTime.now();
// 获取本周四 18:00:00.000
LocalDateTime thursday =
    now.with(DayOfWeek.THURSDAY).withHour(18).withMinute(0).withSecond(0).withNano(0);
// 如果当前时间已经超过 本周四 18:00:00.000, 那么找下周四 18:00:00.000
if(now.compareTo(thursday) >= 0) {
    thursday = thursday.plusWeeks(1);
}
// 计算时间差,即延时执行时间
long initialDelay = Duration.between(now, thursday).toMillis();
// 计算间隔时间,即 1 周的毫秒值
long oneWeek = 7 * 24 * 3600 * 1000;
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
System.out.println("开始时间:" + new Date());
executor.scheduleAtFixedRate(() -> {
    System.out.println("执行时间:" + new Date());
}, initialDelay, oneWeek, TimeUnit.MILLISECONDS);

1.2.12 Tomcat 线程池

tomcat的连接器模型(详细的原理见tomcat的笔记)

  • LimitLatch 用来限流,可以控制最大连接个数,类似 J.U.C 中的 Semaphore 后面再讲
  • Acceptor 只负责【接收新的 socket 连接】
  • Poller 只负责监听 socket channel 是否有【可读的 I/O 事件】
  • 一旦可读,封装一个任务对象(socketProcessor),提交给 Executor 线程池处理
  • Executor 线程池中的工作线程最终负责【处理请求】

Tomcat 线程池扩展了 ThreadPoolExecutor,行为稍有不同

  • 如果总线程数达到 maximumPoolSize
    • 这时不会立刻抛 RejectedExecutionException 异常
    • 而是再次尝试将任务放入队列,如果还失败,才抛出 RejectedExecutionException 异常

源码 tomcat-1.0.42

public void execute(Runnable command, long timeout, TimeUnit unit) {
    submittedCount.incrementAndGet();//任务数+1
    try {
        // 调用 Java 原生线程池的 execute 去执行任务
        super.execute(command);
    } catch (RejectedExecutionException rx) {
        // 如果总线程数达到 maximumPoolSize,Java 原生线程池执行拒绝策略
        if (super.getQueue() instanceof TaskQueue) {
            final TaskQueue queue = (TaskQueue)super.getQueue();
            try {
                //再次尝试放入队列
                if (!queue.force(command, timeout, unit)) {
                    // 如果再次插入失败,执行拒绝策略。
                    submittedCount.decrementAndGet();
                    throw new RejectedExecutionException("Queue capacity is full.");
                }
            } catch (InterruptedException x) {
                submittedCount.decrementAndGet();
                Thread.interrupted();
                throw new RejectedExecutionException(x);
            }
        } else {
            submittedCount.decrementAndGet();
            throw rx;
        }
    }
}

=====================================================================
    JUC中的excute方法源码:
     public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

这里解释下变量submittedCount,根据源码的注释,它表示已经加入线程池但还没有执行或者执行还没结束的任务数。

/**
     * The number of tasks submitted but not yet finished. This includes tasks
     * in the queue and tasks that have been handed to a worker thread but the
     * latter did not start executing the task yet.
     * This number is always greater or equal to {@link #getActiveCount()}.
     */
private final AtomicInteger submittedCount = new AtomicInteger(0);

TaskQueue.java

public boolean force(Runnable o, long timeout, TimeUnit unit) throws InterruptedException {
    if ( parent.isShutdown() )
        throw new RejectedExecutionException(
        "Executor not running, can't force a command into the queue"
    );
    //forces the item onto the queue, to be used if the task is rejected
    return super.offer(o,timeout,unit); 
}

Tomcat 的任务队列 TaskQueue 扩展了 Java 中的 LinkedBlockingQueue, LinkedBlockingQueue 默认是无界队列,除非给它一个 capacity。Tomcat通过maxQueueSize 参数来设置capacity,TaskQueue 的构造函数中有个整型的参数 capacity,TaskQueue 将 capacity 传给父类 LinkedBlockingQueue 的构造函数。默认情况下 maxQueueSize 的值是 Integer.MAX_VALUE,等于没有限制,这样就带来一个问 题:当前线程数达到核心线程数之后,再来任务的话线程池 会把任务添加到任务队列,并且总是会成功,这样永远不会有机会创建新线程了。为了解决这个问题,TaskQueue 重写了 LinkedBlockingQueue 的 offer 方法。

private transient volatile ThreadPoolExecutor parent;

// 线程池调用任务队列的方法时,当前线程数肯定已经大于核心线程数了,即核心线程数已创建完毕
@Override
public boolean offer(Runnable o) {//这个方法是在super.execute()中调用的
    
    //we can't do any checks
    if (parent==null) return super.offer(o);
    
    //we are maxed out on threads, simply queue the object
    //1.如果线程数已经到了最大值,不能创建新线程了,只能把任务添加到任务队列,至于添加队列是否成功是后话
    if (parent.getPoolSize() == parent.getMaximumPoolSize()) return super.offer(o);
    
     // 执行到这里,表明当前线程数大于核心线程数,并且小于最大线程数。
     // 表明是可以创建新线程的,那到底要不要创建呢?分两种情况:
       
      
    //we have idle threads, just add it to the queue
    //2. 如果已提交的任务数小于当前线程数,表示还有空闲线程,无需创建新线程
    if (parent.getSubmittedCount()<=(parent.getPoolSize())) return super.offer(o);
    
    //执行到这说明parent.getSubmittedCount()>=(parent.getPoolSize()),即已提交任务数大于当前线程
    
    //if we have less threads than maximum force creation of a new thread
    //3. 如果已提交的任务数大于当前线程数,线程不够用了,返回 false 去创建新线程(execute方法中)
    if (parent.getPoolSize()<parent.getMaximumPoolSize()) return false;
    
    //if we reached here, we need to add it to the queue
    // 默认情况下总是把任务添加到任务队列
    return super.offer(o);
}

这里指的是==提交任务==(占有线程,还没执行完的任务),别和线程池的工作方式搞混了。

这样重写以后如果maxQueueSize 的值是默认的 Integer.MAX_VALUE话,高并发下会一直创建应急线程。

Connector 配置

配置项 默认值 说明
acceptorThreadCount 1 acceptor 线程数量
pollerThreadCount 1 poller 线程数量
minSpareThreads 10 核心线程数,即 corePoolSize
maxThreads 200 最大线程数,即 maximumPoolSize
executor - Executor 名称,用来引用下面的 Executor

Executor 线程配置(优先级更高)

配置项 默认值 说明
threadPriority 5 线程优先级
daemon true 是否守护线程
minSpareThreads 25 核心线程数,即 corePoolSize
maxThreads 200 最大线程数,即 maximumPoolSize
maxIdleTime 60000 线程生存时间,单位是毫秒,默认值即 1 分钟
maxQueueSize Integer.MAX_VALUE 队列长度//为了防止任务堆积,应适当调整
prestartminSpareThreads false 核心线程是否在服务器启动时启动

小结:

tomcat的线程池执行的原理:

  • 前corePoolSize个每个任务入队,同时在线程池创建一个线程。
  • 之后的任务直接放入队列,不创建线程,当任务队列满了就开始创建临时线程。
  • 当达到最大线程数,仍旧尝试向队列添加任务(这点和原生线程池有所不同)。
  • 添加失败,拒绝服务
https://www.cnblogs.com/moonyaoo/p/13047495.html

1.3. Fork/Join

1.3.1 概念

Fork/Join 是 JDK 1.7 加入的新的线程池实现,它体现的是一种分治思想,适用于能够进行任务拆分的 cpu 密集型运算。(并行流parallelStream就是基于此实现的)

所谓的任务拆分,是将一个大任务拆分为算法上相同的小任务,直至不能拆分可以直接求解。跟递归相关的一些计算,如归并排序、斐波那契数列、都可以用分治思想进行求解。

Fork/Join 在分治的基础上加入了多线程,可以把每个任务的分解和合并交给不同的线程来完成,进一步提升了运算效率。

Fork/Join 默认会创建与 cpu 核心数大小相同的线程池。

1.3.2 使用

提交给 Fork/Join 线程池的任务需要继承 RecursiveTask(有返回值)或 RecursiveAction(没有返回值),例如下面定义了一个对 1~n 之间的整数求和的任务

@Slf4j(topic = "c.AddTask")
class AddTask1 extends RecursiveTask<Integer> {
    int n;
    public AddTask1(int n) {
        this.n = n;
    }
    @Override
    public String toString() {
        return "{" + n + '}';
    }
    @Override
    protected Integer compute() {
        // 如果 n 已经为 1,可以求得结果了
        if (n == 1) {
            log.debug("join() {}", n);
            return n;
        }
        // 将任务进行拆分(fork)
        AddTask1 t1 = new AddTask1(n - 1);
        t1.fork();
        log.debug("fork() {} + {}", n, t1);
        // 合并(join)结果
        int result = n + t1.join();
        log.debug("join() {} + {} = {}", n, t1, result);
        return result;
    }
}

然后提交给 ForkJoinPool 来执行

public static void main(String[] args) {
    ForkJoinPool pool = new ForkJoinPool(4);
    System.out.println(pool.invoke(new AddTask1(5)));
}

结果

[ForkJoinPool-1-worker-0] - fork() 2 + {1}
[ForkJoinPool-1-worker-1] - fork() 5 + {4}
[ForkJoinPool-1-worker-0] - join() 1
[ForkJoinPool-1-worker-0] - join() 2 + {1} = 3
[ForkJoinPool-1-worker-2] - fork() 4 + {3}
[ForkJoinPool-1-worker-3] - fork() 3 + {2}
[ForkJoinPool-1-worker-3] - join() 3 + {2} = 6
[ForkJoinPool-1-worker-2] - join() 4 + {3} = 10
[ForkJoinPool-1-worker-1] - join() 5 + {4} = 15
15

用图来表示


上面的额例子最终的递归树变成了链表,深度为O(n)

改进

class AddTask3 extends RecursiveTask<Integer> {
    int begin;
    int end;
    public AddTask3(int begin, int end) {
        this.begin = begin;
        this.end = end;
    }
    @Override
    public String toString() {
        return "{" + begin + "," + end + '}';
    }
    @Override
    protected Integer compute() {
        // 5, 5
        if (begin == end) {
            log.debug("join() {}", begin);
            return begin;
        }
        // 4, 5
        if (end - begin == 1) {
            log.debug("join() {} + {} = {}", begin, end, end + begin);
            return end + begin;
        }
        // 1 5
        int mid = (end + begin) / 2; // 3
        AddTask3 t1 = new AddTask3(begin, mid); // 1,3
        t1.fork();
        AddTask3 t2 = new AddTask3(mid + 1, end); // 4,5
        t2.fork();
        log.debug("fork() {} + {} = ?", t1, t2);
        int result = t1.join() + t2.join();
        log.debug("join() {} + {} = {}", t1, t2, result);
        return result;
    }
}

然后提交给 ForkJoinPool 来执行

public static void main(String[] args) {
    ForkJoinPool pool = new ForkJoinPool(4);
    System.out.println(pool.invoke(new AddTask3(1, 10)));
}

结果

[ForkJoinPool-1-worker-0] - join() 1 + 2 = 3
[ForkJoinPool-1-worker-3] - join() 4 + 5 = 9
[ForkJoinPool-1-worker-0] - join() 3
[ForkJoinPool-1-worker-1] - fork() {1,3} + {4,5} =?
[ForkJoinPool-1-worker-2] - fork() {1,2} + {3,3} =?
[ForkJoinPool-1-worker-2] - join() {1,2} + {3,3} = 6
[ForkJoinPool-1-worker-1] - join() {1,3} + {4,5} = 15
15

用图来表示

可参考:线程池相关面试题

注:内容是从自己语雀上迁移过来的,内容整理自视频课程深入学习并发编程。

举报

相关推荐

0 条评论